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SUMMARY
In this report the effect of multiple scattering on the coherent wave
propatation in discrete random media has been investigated. The media is

modelled as a random distribution of spherical and non-spherical scatterers.

i

The first and second order probability distribution functions are specified
and a self-consistent T-matrix approach together with Lax's guasi-
crystalline approximation is used to derive dispersion equations whose
singular solutions yield the complex propagation constant of the "effective"

- medium.

Our formalism is well suited for numerical computations for wavelengths

comparable to scatter size and high volume concentration of scatterers; to
our knowledge, it is the only method that provides reliable numerical
e results for the attenuation and phase velocity of the coherent wave. The
- quasi-crystalline approximation (QCA) is found to be applicable for all
concentration values from low to high. The QCA that is used to truncate the

5 hierarchy of equations during the configurational averaging procedure
requires knowledge of the two particle joint pr.wvability distribution
function.

Our model of the random system is that the sphere circumscribing the 1

scatterers cannot interpenetrate. In the statistical mechanics literature

rf this is synonymous with ensemble of 'hard spheres.' For such a model,
several forms of the pair-correlation function can be obtained from the
i: statistical mechanics of simple liquids by using several theories and
- calculations such as the Hypernetted-chain Equation (HNC), the Percus-
- ‘Yevick Approximation (P-YA), the Self-Consistent Approximation (SCA),
ii Monte Carlo calculations, etc. For the hard sphere model, temperature

and other thermodynamic quantities do not appear in the final form of the

correlation functions and hence are equally valid for our system. Five
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O forms of the pair correlation function were considered:
(a) Well stirred approximation (WSA). This is the simplest and in-
l! corporates only the whole correction. In the Rayleigh limit, for
¢ > 125, this model fails. But with increasing frequency, it is good
s for higher values of c. At ka = wa/c ~ 5.0, there is no difference
I! between this and other models suggesting that correlations are unimportant
at high values of the wavenumber.
(b) The Percus-Yevick approximation can be used to obtain a semi-

analytical form of the pair correlation function. It is good for

¢ < 0.35.

;i (¢) Virial Expansion in powers of the number density can also be

&= conveniently used since analytical expansions are available. Obviously

i; it works only for ¢ < -°1.

B (d) The Matern model is an analytical model for the pair correlation

ll function that is also convenient to use for c < *125. The Matern model is

o found to be superior to the WSA for ¢ < 0.125.

- (e) The self-consistent approximation to the pair correlation

% function which is based on the Percus-Yevick model and the Hyper-netted

. Chain approximation is the one that has proved most successful in our

}? computations. It provides reliable results for a wide range of scatterer

SE concentrations.

- All of the above forms were tested for several values of c¢ and ka.

gé Recently our calculations were compared with the experimental findings of
Professor A. Ishimaru for a distribution of latex spheres in water. The
agreement is excellent for all cases, see our paper Nos: 1, 3 and 4. 1In

;; paper Nos: 4 and 5, we have introduced the concept of an average T-

- matrix to include a size distribution for scatterers using the Gaussian

" distribution function. The question may be raised as to the radius of the

; :

H




s

fi excluded volume surrounding each scatterer. If we use 4a, the diameter of
the largest size sphere of the distribution, although we would be correct in

ll the integration on the allowed position for each scatterer, we would be

< excluding an unreasonable volume, thus limiting the volume fraction of

scatterers., It seems more reasonable to take the diameter of the mean

0]
Sii it

g! sphere, 2a as the radius of the excluded spherical volume. On the av¢rage,

I“' this would be applicable to most scatterers and allow us to consider higher

E} volume fractions. If the volume fraction is low enough, whether the radius

s of the excluded sphere is 2a or 4a will not pose a problem, see our paper

: No: 6 for more details. In Paper No. 5, we have compared Keller's and

ég Twersky's multiple scattering approaches with our formalism. Our formalism
is in exact agreement with Twersky's approach. However, it is better

li: suited for numerical computations. Recently, we have also performed cal-

T culations on coated dielectric spheres in free space or in another

ll dielectric. Numerical results are obtained for the complex average

;3 dielectric constant, coherent attenuation and phase velocity as a function

of concentration (0 <c<0.42). A plot of coherent attenuation vs c for
coated spheres is attached with this report, see Fig. 1. A T-matrix program #

has also been developed to obtain the T-matrix of coated irregular arbitrary ég

shaped bodies which can be implemented in our multiple scattering approach

;: to study wave propagation through snow, aerosol and various kinds of debris.

h Numerical results of irregular arbitrary shaped bodies will be forthcoming.

EE Recently, we had extended our formalism to study high frequency

- propagation of waves in random media. We have compared our results with j
N

- those of experimental findings obtained by Ishimaru for ka as high as

Y
[y

83.596 and the agreement is found to be excellent, see Fig. 2. We are

o

confident that we have a well founded formalism and a sound numerical
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Coherent electromagnetic wave propagation in an infinite medium composed of a random distri-
bution of identical, finite scatterers is studied. A self-consistent multiple scattering theory using the T

g S0

matrix of a single scatterer and a suitable averaging technique is employed. The statistical nature of the
position of scatterers is accounted for by ensemble averaging. This results in a hierarchy of equations

relating the different orders of correlations between the scatterers. Lax's quasi-crystalline approxi-
mation is used to truncate the hierachy enabling passage to a homogeneous continuum whose bulk

propagation characteristics such as phase velocity

(NG o4

and coherent wave attenuation can then be studied.

Three models for the pair correlation function are considered. The Matern model and the well-stirred

approximation are good only for sparse concentrations, while the Percus-Yevick approximation is
good for a wider range of concentration. The results obtained using these models are compared with

cal applications of this study include artificial dielectric {composites) and electromagnetic wave propa-

' the available experimental results for dielectric scatterers embedded in a host dielectric medium. Practi-

gation through hydrometeors. dust, vegetation, etc.

I. INTRODUCTION
We consider the propagation of plane coherent
electromagnetic waves in an infinite medium contain-
-~ ing identical, lossless, randomly distributed particles.
Our aim is to characterize the random medium by an
-~ effective complex wave number K which would be a
<= function of the particle concentration, the electrical
‘> size, and the statistical description of the random
- positions of the scatterers. The imaginary part of K
-* describes the coherent attenuation which is due to
.- multiple scattering only when the particles them-
selves are assumed to be lossless. The understanding
- of the behavior of Im (K) as a function of particle
=, concentration (c) and/or frequency (ka) is very im-
portant in many practical applications, including

% 'Now at Colorado State University, Fort Collins, Colorado
80523,

<. Copyright 1982 by the American Geophysical Union.

s .

Paper number 2S0411.
.- 0048-6604 52 0910-0411508.00

-
)
e

-
»

wave propagation in the atmosphere and oceans and
whenever random distributions of scatterers influence
electromagnetic wave behavior.

The theoretical formulation presented here closely
follows the procedure described by Varadan et al.
(1979, 1982], Varadan and Varadan [1980], and
Varadan [1980]. This approach is based on a self-
consistent multiple scattering theory and relies on the
T matrix [Waterman, 1971] which relates the field
scattered by a particle to an arbitrary exciting field.
The statistical description of the random positions of
the scatterers is used to define a configurational
average which results in a hierarchy of equations
relating the different orders of correlations between
the scatterers. Lax's [1952] quasi-crystalline approxi-
mation (QCA) is used to truncate the hierarchy
which results in the usual ‘*hole correction’ integrals.
Foliowing Twersky (1977, 1978a. b}, a radially sym-
metric pair correlation function is introduced. and
approximate models are chosen from Talbot and
Willis [1980]. The ‘well-stirred” approximation
(WSA) which was used previously by Varadan et al.
[1979]) and Bringi et al. [1981] assumes no corre-
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Fig }. Geometry of randomly distributed and aligned scatterers.

lation between the particles except that they should
not interpenetrate. In particular, the WSA gives
unphysical results for ¢ > 0.125 at the Rayleigh or
low-frequency limit.

In this paper we consider two other pair corre-
lation functions, viz., (1) the Matern [1960] model
and (2} the Percus-Yevick [Percus and Yerick, 1958)
model for a classical system of hard spheres. Compu-
tations of Im (K) are presented for dielectric scat-
terers imbedded in a host dielectric medium, using
the above three models as a function of frequency
and concentration. We compare our solutions to
some recent optical propagation experiments con-
ducted by Ishimaru (A. Ishimaru, personal communi-
cation, 1981). Sample computations are also presen-
ted comparing the WSA and the single scattering
approximation for a rain medium.

2. FORMULATION OF THE PROBLEM

Consider N identical, finite dielectric scatterers
that are randomly distributed either in free space or
in a host dielectric medium. The scatterers are homo-
geneous with a relative dielectric constant of ¢,, their
centers being denoted by 0,, 0,, 0;,---, 0y (see
Figure 1). They are assumed to be bodies of revol-
ution with symmetry axis parallel to the o direction.
A monochromatic, plane, coherent electromagnetic
wave is assumed to propagate along the symmetry
axis of the scatterers so as to satisfy the condition
that the effective medium be isotropic and polariza-
tion insensitive. The time dependence of the incident
field and hence the fields scattered by the individual
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scatterers is of the form exp ( —jwt) and is suppressed
in the equations that follow. Even though the theory
presented here is valid for spheroidal scatterers
[Varadan et al., 1982], we present computations only
for spherical scatterers in order to compare our re-
sults with available experiments.

Let E%r) be the electric field arising from the inci-
dent plane wave and Ef(r) the field scattered by the
ith scatterer. Both these fields satisfy the vector
Helmholtz equation. The total field at any point out-
side the scatterers is given by the sum of the incident
field and the fields scattered by all the scatterers,
which can be written as

N
EfD=EM+ Y Ep) p=r-r 1))

i=1

where EJ(p,) is the field scattered by the ith scatterer
at the observation point r. However, the field that
excites the ith scatterer is the incident field E® plus
the fields scattered from all other scatterers except
the ith. The term exciting field E€ is used to dis-
tinguish between the field actually incident on a scat-
terer and the external incident E° produced by a
source at infinity. Thus at a point r in the vicinity of
the ith scatterer, we write

N
En=En+Y Elp) ac<lipil<2a (2

j*i

where a is a typical dimension of the scatterer.

The exciting and scattered fields for each scatterer
can be expanded in terms of vector spherical func-
tionswith respect to an origin at the center of that
scatterer:

2 x t 2
Ef(r) = Z Z z Z bilmc Re ¢lma‘pl')

t=1i=1 m=0 g=1

=) bi, Re ¥, 3

and
EXr =3 B, V. 4)
where n represents a combined index notation for the

set {[I.m,o].
The vector spherical functions are defined as

‘l’um(ﬂ = V x [l’h,“\")] Ylma(o- ¢) (5)
Vaimo(f) = (1 K)V 3¢ 1,10, (0} (6)
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948 BRINGI, VARADAN, AND VARADAN

In (3-6), k is the wave number, h; is the spherical
Hankel function of the first kind, and the ¥,,,(8, ¢)
are the normalized spherical harmonics defined with
real angular functions. In (3) the exciting field is ex-
panded in terms of the regular (Re) basis set (Re ¥!,)
obtained by replacing h, in (5) and (6) by j,, the
spherical Bessel functions of the first kind. Thus the
choice of the basis set in (4) satisfies the radiation
condition at infinity for the scattered field, while the
choice in (3) satisfies the regular behavior of the ex-
citing field in the region a < |p;] < 2a. The super-
script i on the basis functions refer to expansions
with respect to 0,, and b, and B!, are the unknown
exciting and scattered field coefficients, respectively.
We also expand the incident field in terms of vector
spherical functions:

E%r) = e*'" Y a,, Re ¥i(p) M
where the a,, are the known incident field coef-
ficients.

The unknown coefficients b, can be related to B!,
by means of any convenient scattering operator; in
this case we employ the T matrix as defined by
Waterman [1971]:

Bl,=Y Ti onbin t)]

TR

Substituting (3), (4), and (7) in (2), we obtain

N

Y b, Rew,=e*"Y a, Rei, + ¥ 3 BV, &)
[{] m i®i ™

Since the field quantities are expanded with respect
to centers of each scatterer, we obtain (9) with basis
functions expanded with respect to ith and jth cen-
ters. In order to express them with respect to a
common origin 0;, we employ the translation addi-
tion theorems for the vector spherical functions (see,
for example, Bostrom, [1980]) which can be written
in a compact form as follows:

Vi) = z Tn, .nlPi)) Re ¥,.,(p) Pyl > 1l (10)

Valp) = 3 Rep cnlp) - Wend®) 1941 <01l
where p;; = r; — r; is the vector connecting 0; to 0;,
G.n ..a is the translation matrix for the vector func-
tions, and R,, ., is a matrix with spherical Hankel
functions in o,,,.,. replaced by spherical Bessel func-
tions.

Employing (8) and (10) in (9) and using the orthog-
onality of the vector spherical functions, we obtain

AP SO\ S S U NS I T SRR AU W S AP P

L e it i ™ A ™ i =

the following set of algebraic equations for the excit-
ing field coefficients b;,:

N
b:u = eik! .haru + Z Z z U,...,_ m(pij)

i v roan

¢ T{'u'. tony b{"u» (11}

From (11) it can be seen that the exciting field
coefficients of the ith scatterer explicitly depend on
the position and orientation of the other scatterers.
In this paper we consider a random distribution of
spherical scatterers and the case when both N—
and the total volume accessible to the scatterers
¥V — ¢ such that N/V = n, is a finite number den-
sity. For such distributions a configurational average
of (11) can be made over the positions of all the
scatterers [see Varadan et al, 1982]. The quasi-
crystalline approximation [Lax, 1952] can then be
invoked to arrive at an equation for the configur-
ational average {b!,>; of the exciting field coeflicients
with one scatterer fixed:

biyi=e* a, +(N=1DY ¥ T vons

e tene

* J. p(rj | ri)ar'm. m‘pij)<b{nnn>j drj (lz)
v

where p(r;|r) is the two-particle conditional prob-
ability density.

We now assume that the average or coherent field
propagates in a medium with an effective complex
wave number K = (K, + iK;)Z in the direction of the
original incident field:

CEdr)), = A exp (iKZ -1} 13

where A is the amplitude of the coherent wave. Thus
the average exciting field coefficients may be ex-
pressed as

(blime)i = €XP (iKZ « 1) 1ng 01 [0c1052 + 6,2 9,,] (14)

where the Kronecker deltas in (14) indicate that only
the azimuthal index m = | contributes while those in
square brackets indicate that the effective medium is
isotropic.

Equation (14) is now substituted in (12), and the
conditional probability p(r;|r;) is expressed in the
form

1
pir;ir) = _V(l o a(x) x>1

pr,ie) =0 x<1

(15

where x = p,;|2a. The function ¢(x) is termed the

oA
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Fig. 2. The Percus-Yevick pair correlation function for hard
spheres.

pair correlation function, which is assumed to be
spherically symmetric. Equation ({2) can now be sim-
plified by making use of certain symmetry properties
) of the T matrix [Waterman, 1971] and by invoking
o the extinction theorem [Twersky, 1977] to yield the
following set of equations for the unknown coef-
ficients Y 1q:

) Y wOmil0:1002 + 6026,1]

< N -1
.: =‘_V_- Z Z R pp——

eilrgr trlvgn

1+t
? ¢ { Z ’(Kv k‘ ¢ ;"Yt"l"l"' D.rll!la'.tlla} “6)
- A==t
- where
- K, k, c, /)
[ o ’ 6c : , Y
! ‘::, = m [Zka]‘(ZKa)hA(Zka)—2Kah‘(2ka)]4(2Ka)]

T + 24cf -.tz[g(x)-—l]hi(Zkax}jAuKax) dx a7
1
(27 + IX20 + l)]

Dopror arodd) = i1
ertotan, 1ok f) = [ W+ 1)

.'~'F

(o e B S s s Bve e sttt e e e e |
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N A (A .
w+n | Lt -1 offjo o o :
LU )+ K+ D= + 1D)S,, B, :
i a=1 ., ) _
+ l_o P ]{[/.2—(1 — D2 4+ 1+ )2 a2 l':

* (l _6«'xéallécz—da'26¢l) (ls)

In (17), ¢ = $ma’n, is the fractional concentration by
volume, and in (18),

[jn J2 s ]
my my; my
is the Wigner 3-j symbol. If the integral I in (17) can
be evaluated for suitable models of the pair corre-
lation function, then (16) constitutes a set of homoge-
neous, algebraic equations with Y,,, as the un-
knowns. For a nontrivial solution, the determinant of
the coeflicient matrix must vanish. This yields the
dispersion equation for the effective, complex wave
number K. In the Rayleigh or low-frequency limit, 5
analytical solutions for K can be found while at X
higher frequencies the solutions can be generated -
computationally. The real part K, is the phase con- A
stant while the imaginary part is the attenuation con- -
stant of the effective medium. ‘
If the concentration is sparse, ¢ — 0, then g(x) as- -
sumes the form of a step function at x = 1. This be-
havior of g{x) is termed the well-stirred approxi-
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mation (WSA) by Talbot and Willis [1980] and has
been used previously by Fikioris and Waterman
[1964]. Talbot and Willis [1980] also discuss a
number of other pair correlation functions suitable
for use at higher concentrations, viz., a model due to
Matern [1960] and the model obtained by solution
of the Percus-Yevick [Percus and Yevick, 1958] inte-
gral equation for a classical system of hard spheres
[Wertheim, 1963]. Other forms for g(x) can be used
based on the statistical mechanical theory applied
toward the study of dense gases and liquids
[Twersky, 1978b]. In this study, however, we show
sample computations using the g(x) corresponding to
the WSA, the Matern model which is analytic, and
the Percus-Yevick approximation (P-YA) based on
tabulated values of g(x) given by Throop and Bear-
man [1965). The behavior of g(x) versus x is shown
in Figure 2 for various values of concentration.

3. COMPUTATIONS

In many practical applications it is of interest to
determine the concentration levels above which
multiple scattering effects must be accounted for in a
rigorous manner. At very low concentrations, ¢ — 0,
the particles can be considered as essentially decor-
related so that the so-called ‘single scattering’ ap-
proximation (SSA) can be used leading to the follow-
ing expression for Im K:

Im (K k) = $cQ.../(ka) (19)

¥ 3
4 6% ]
- -
A A i 1 L A T
o] 10 20 3.0

Fig. 4. The coherent attenuation constant ; versus ka fore, =
£,(7) using SSA.
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Fig. 5. The normalized attenuation constant ; versus con-
centration ¢ for different values of ka using the WSA.

where Q.. is the normalized (with respect to na?)
extinction cross section of a sphere of radius a.
Brown [1980] has shown recently that under the con-
ditions of ¢ — 0 and no correlation between particles,
the Foldy-Twersky integral equation [see Ishimaru,
1978] for the coherent field reduces to (19) above and
thus does not account for the effects of multiple scat-
tering. To demonstrate that (19) and the theoretical
procedure given in this paper lead to identical results,
we have compared computations for a monodisperse
rain medium. The rain medium is assumed to consist
of spherical water drops at concentrations in the
range 10°* < ¢ < 10~? which encompasses even the
heaviest rainfall conditions. In Figure 3 the attenu-
ation constant ; = 4nK,’'K, is shown as a function
of freqency or ka using the WSA, which is to be
compared to Figure 4 which uses (19) or the SSA.
The refractive index of water is taken from Ray
[1972] assuming a temperature of 5 C. Note that
both solutions yield nearly identical resuits. In Figure
5 we show 7 versus concentration (or equivalently,
rainfall rate) at a number of fixed frequencies or ka
values using the WSA. The straight line relationship
reflects an attenuation versus concentration relation-
ship of a power law form. Olsen et al. [1978] have
used (19) to derive the power law relation between
attenuation and rainfall rate (see their Figure 3).

At higher concentrations, pair correlation effects
become important. In the Rayleigh or low-frequency
limit, Twersky [1978h] has given an expression for
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Im (K, k) by considering the leading effects of the pair
correlation:

Im (K k) = ctka)*[ie, — 1) (g, + ]2 W (20)
where W is the packing factor given by

(1—cp®

W=e—
{1+ 2c)?

=1+ 24('J. Ngio-1]dx (2D
0
The above integral can be intergrated analytically to
give W when g(x) is given by the P-YA. In Figure 6
we show Im (K. k) versus concentration for a fixed
frequency or ka = 0.05. The random medium is as-
sumed to consist of latex spheres (g, = 2.26) imbed-
ded in water and corresponds to the experimental
setup used by Ishimaru (A. Ishimaru, personal com-
munication, 1981) for his optical propagation experi-
ments. The agreement between (20) and the compu-
tations using the P-YA is excellent as expected while
both the WSA and the Matern model fail (Im K < 0)
for ¢ > 0.125. However, the Matern model is superior
to the WSA as expected. In Figure 7 we show similar
results at ka = 0.56 for which Ishimaru (personal
communication, 1981) has experimental results (latex
sphere diameter = 0.107y4, 4 = 0.6u) at concentration
values of 0.01 and 0.1. Note that the SSA overesti-
mates the attenuation constant even for ¢ as low as
0.01: as c increases, the deviation from the P-YA is
significant. For low values of ¢, the P-YA, WSA. and
Matern model are all in excellent agreement. Even at
¢ = 0.10. all three pair correlation models are in rea-
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sonably good agreement with the experimental value.
For ¢ > 0.125 the Matern model, as well as the WSA,
deviates considerably from the P-YA. Even though
experimental values for ¢ > 0.1 are as yet unavail-
able, we feel the P-YA will continue to predict the
correct behavior for values of ¢ as high as 0.35. In
Figure 8 the attenuation constant is plotted versus ka
for a fixed concentration ¢ = 0.209 using the SSA,
WSA, and the P-YA. Values for the WSA for
ka < 0.75 are not shown since the solution fails (Im
K < 0) in this region. However, as ka increases, it
appears that the WSA tends to merge with the P-YA.
The SSA, on the other hand, consistently overesti-
mates the attenuation over the full range of ka
values.

4. CONCLUSIONS

This paper analyzes the effects of multiple scatter-
ing on the coherent wave as it propagates through a
discrete random medium consisting of pair-
correlated  scatterers. At low concentrations
{c < 1%), multiple scattering effects are seen to be
negligible, while at higher concentrations, suitable
pair correlation models must be assumed. Compu-
tations are presented using the well-stirred approxi-
mation and the Percus-Yevick approximation as well
as a model due to Matern. These computations are
compared (and shown to be in excellent agreement)
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with recent experiments by Ishimaru (person . com-
munication, 1981) at high scatterer concentrations
(c=10%). At very low concentrations, ¢ < 1%, the
WSA is compared (and shown to be in excellent
agreement) with the so-called single scattering solu-
tion for a hypothetical monodisperse rain medium
(107* < ¢ < 1072). At these concentration levels the
rain medium is sparse and the scatterers are essen-
tially decorrelated so that multiple scattering effects,
as far as the coherent wave attenuation is concerned,
can be safely neglected.
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The Effects on Pair Correlation Function of Coherent
Wave Attenuation in Discrete Random Media

V. N. BRINGI, MEMBER, IEEE, V. V. VARADAN, AND
V. K. VARADAN

Abstraci—The Percus-Yevick approximation (P-YA) of pair cor-
relation function for hard spheres is combined with the 7-matrix
formulation to study the coherent wave attenuation of electromagnetic
wave propagation in a discrete random medium. The effect of the pair
correlation function is seen to be significart st high fractional volumes
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of equations. Thus, only knowledge of the two particle (pair)
correlation function is required. In [1], we assumed that the
particles were hard (nonpenetrating) but otherwise uncor-
related. Talbot and Willis [S] refer to this as the “well-stirred
approximation’” (WSA). This yielded a set of “‘hole correc-
tion” integrals which were evaluated analytically and the ex-
tinction theorem was invoked to yield the dispersion relations
characterizing the bulk or effective properties of the medium
which was solved numerically {1], [6], [7]. Computations
of the effective coherent wave attenuation as a function of
frequency were presented in [1] for spherical and oblate
spheroidal scatterers at concentrations (¢) of 0.05, 0.1, and
0.2. The WSA leads to unphysical nulls in the plots of coher-
ent attenuation as a function of frequency or concentration
for ¢ 3 0.125 and in fact begins to fail for ¢ > 0.05 in the low
frequency or Rayleigh limit. These nulls, however, disappear
at higher values of the nondimensional wave number ka (a
being a characteristic dimension of the obstacle).

In this communication, we wish to consider a more realis-
tic model of the pair correlation function which is valid for
higher values of concentration. The Percus-Yevick (P-YA)
model (8] seems most suitable at the present time. Calcula-
tions employing P-YA here are compared with WSA results
in [1]. The unphysical nulls in {1} disappear for lower values
of ka, and at higher values of ka there is agreement with the
results obtained in (1) and [7].

MULTIPLE SCATTERING FORMULATION

We consider M(N = %) rotationally symmetric oriented
scatterers randomly distributed in a volume V(¥ - %°) so0 that
the number of particles per unit volume ng = N/V is finite,
see Fig. 1. Only the most important details that lead to the dis-
persion equation involving the pair correlation function are
presented and for all intermediate steps, we refer the reader
to(1].

Monochromatxc plane electromagnetic waves giving rise to
an electric field £0 are assumed to propagate parallel to the
rotational axis of symmetry of the scatterers (the z-axis),
see Fig. 1. The field scattered by the ith scatterer is denoted

of the discrete scatterers (20.125), but al. . .2pends on the frequency _
- of the propagating wave—the effect being less at higher frequencies. ::eyrfs lssovtel:‘a; the total field £ at a point 7 outside the scat
o The results are compared with previous caiculations which employed e y
the **well-stirred approximation’ (WSA) for the pair correlation. R R N,
E@)=E°G)+ Y, Ef(). )
- INTRODUCTION =1
- We consider the multiple scattering of electromagnetic The field exciting the ith scatterer E is given by
waves by randomly distributed dielectric scatterers using the N
- approach given by Varadan, Bringi, and Varadan [1]. This Zecdy = £ + 2 5oy, P-tl<% 2
. formulation uses the T-matrix [2] to characterize the scat- Ef(=E°0) /§ EfE). a<lr—nl ) 2
e tering by a single isolated particle followed by configurational
averaging techniques (3], [4]. Lax’s quasi-crystalline approxi- From (1) and (2), we note that
mation (QCA) [4] is used to truncate the resulting heirarchy . . .
o E@®)=Ef(F)+E'() 3)
Manuscripi received July 31, 1981; revised September 18, 1981.
This work was supported in part by NOAA under Grant 04-78-B01-21 5o that the exciting and scattered fields must be defined in a
" ‘"d‘?y :5';(?’3‘?‘,800?3"76!& Department of Electrical Engincering self-consistent manner. These fields are expanded in a set of
' . N. Bringi is wi a 8 . . .
i~ Colorado State University, Fort Collins, CO 80523. vector spherical functions as follows:
V. V. Varadan is with the Wave Propagation Group, Boyd Labora- - ] °
.. tory, and the Department of Engineering Mechanics, The Ohio State , ‘ - .
% University, Columbus, OH 43210. Efh=2 2 2 (B3mi Re MomdA7—7))
V. K. Varaden is with the Wave Propagation Group, Boyd Labora- =0 m=0 o=e¢
tory, and the Department of Engineering Mechanics, The Ohio State ! - o o o
.. University, Columbus, OH 43210. +comi ReNom(F—7)}:  a<|IF—F1<2 (4)
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Fig 1.

Geometry of randomly distributed and aligned scatterers with
dielectric constant e, excited by an incident plane wave £°(). Each
scatterer is assumed to be circumscribed by a spherical shell of
radiusa.

and
El’(?)= z 2 E {B:mlﬁaml(?—;l)
{ m [

+Clmt NgmiG—P)); 17 —Fi1> 2 )
where {b, ¢} and {B, C} are expansion coefficients of the
exciting and scattered fields, respectively. The vector spherical
functions {#, N} are defined by Stratton [9].

These expansions are substituted into (2) with the follow-
ing definition of the T-matrix of a single scatterer

]
Blmi ]_ Tom M (T:":.;r)“]
- 1 am
Cami Tom Pt Tomel?

i
b ’ gt
. [ P ’] (6)
Coa'm'l'
(where the T-matrix is independent of the position of the scat-
terers) which results in an equation for the exciting field
coefficients {b, c} alone. This equation is averaged over the
position of all scatterers where the QCA [4] is involved,
and we arrive at an equation for the configurational average
®",; and ' of the exciting field coefficients with one par-
ticle held fixed.
We assume that this average field (the coherent field) pro-
%mtes in a medium with an effective complex wavenumber
= (Ky + iK3)k in the direction of the original incident field
in the discrete medium. Thus, we obtain

Blmi = 'Y ompe'® i ™
and
{ [ lk-'r', (8)
lcomh =iZomee .

where { Y, Z} are expansion coefficients of the average exciting

P HEN Yo 1, [(T MM

Vool n', )+ (T§15)2 Ixeo(n. n', M)
+ zelp[(Tgl';;)lz Voo(n, n', d)

+ (T £10)22 Xeo(n, 7', N1} %)

2 PP Yo, (T8I

n=1p=1A=|in-n|
¢ Xo:(", ’l,, k) + (Tf)ll;)zl WZC("- "" X)]
+ zelp[(Tgll:)l zXOe("v n',\)

+(TEMP2y,.(n, ', V)] } (10)

where (JH), is an integral given by

("H)A(Kr kv C)

- m [ 2Kajx (2KaYhy'(2Ka)

— 2Kah, (2ka)j)'(2Ka)]

+ 24c / x2[g(x) — 1] hy(kx)jr(Kx) dx (11)
x=1

and the functions {{, x} are defined in [7].

In the above equation, ¢ = 41ra3no/3 is the effective “spher-
ical” concentration. In (9) and (10), ¥ and x are independent
of k and K, and expressions for them may be found in [1] and
[7). In (11), jx and hy are the spherical Bessel and Hankel
functions and g(x) is the pair correlation function that is dis-
cussed below.

PERCUS-YEVICK APPROXIMATION FOR THE
PAIR CORRELATION FUNCTION

It is well known that at high concentrations the effects of
pair correlation become important. Following the notation in
(1], the conditional probability distnbution p(; |7) is ex-
pressed as

1
— y >1
p(7 7)) ={v o) x

0, x<1

(12)

where x = |#; — 7;1/2a. The Percus-Yevick integral equation
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(8] for hard spheres is given by

1@)=1+ng / (%) d#’

1X'1<28

—ng / , (®')yr(R—%")d%’' (13)

I1x |I<2e
IX-21>2a

The function 7(x) is related to the direct correlation function
C(X) of Ornstein and Zemike and the pair distribution func-
tion g(x) [9):

8 =1(x); 1¥I>2
g® =0 121 < 2a (14
Cc(®) = 1(3); 1% < 2a
Cc(®) =0; 11> 2.

For hard spheres, the direct correlation function C(%) is
known explicitly and Wertheim [10] has obtained a series
solution for g(x) as a function of concentration when g(x)
is radially symmetric. Throop and Bearman (11] have used
the Wertheim result and provided tabulated values of g(x) as a
function of x for several values of c.

The highest concentration for which the tabulated results
can be used is ¢ = 0.26. Beyond this concentration g(x)
oscillates significantly from its asymptotic value of 1 for x >
4. Thus, the integral in (11) cannot be evaluated accurately.

At low values ¢, g(x) > 1 and hence the integral in (11) is
negligible and the remaining term is simply the WSA which
was used in (1]. Thus, (11) can be regarded as a modified
*‘hole correction integral” and is of the same form used by
Twersky [12], [13]). Talbot and Willis {5] have also suggested
models of the pair correlation function given by Matern which
are valid for ¢ < 0.125. The advantage of the Matern model is
that it is completely analytic.

NUMERICAL COMPUTATIONS

In the Rayleigh limit, Twersky {13] has given an expression
for K3/k by considering the leading effects of the pair correla-
tion function:

2
w (15)

€1

Ky/k = Im (K/k) = c(ka)? l

re?

where €, is the dielectric constant of the scatterer and W is the
packing factor given by

(1- c)‘ ° 2
=———— =+ 24 x‘[g(x)— 1] dx. (16)

(1+ 2) o
In Fig. 2, we compare Twersky’s result for the coherent
attenuation with computations for ka = 0.05 and €, = 3.168
as a2 function of concentration. Also shown is the result assum-
ing the WSA_ It is clear that the WSA fails for ¢ 2 0.05 while
the present calculations is in good agreement with (15).

In Figs. 3, 4, and §, calculations using the P-Y A model are
presented as a function of ka for ¢ = 0.2 for spheres and
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Fig. 2. Coherent wave attenuation, Im (X/k) as a function of concen-
tration for dielectric spheres.
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oblate spheroids. Equations (9) and (10) were solved numeri-
cally to find K(k) using analytical results at low frequencies
(Rayleigh limit) as initial guesses in a root searching algorithm.
For purposes of comparison, [1. Figs. 3, 5, and 6] using just
the WSA, are reproduced. It is clear that the nulls appearing
as a result of the WSA are wrong and unphysical. However,
it is interesting to observe that for ka > 1.5, it appears that the
results obtained using the WSA alone tend to the P-YA result.
Note that in [1, Fig. 3] the curves marked ¢ = 0.05 and ¢ =
0.1 must be interchanged.

CONCLUSION

Calculations using the Percus-Yevick (P-YA) pair correla-
tion function for hard spheres are compared with previous
computations [1] using the well stirred approximation. The
effects of pair correlation are seen to be significant for high
values of scatterer concentrations ¢ > 0.05, although this
effect seems to decrease with increasing frequency. It is clear
that the WSA cannot be used for arbitrary concentrations and
some of the results presented in (1], (6], and (14]-(16] are
thus unphysical.
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Multiple scattering theory for waves in discrete random media
and comparison with experiments

V.K. Varadan,' V. N. Bringi,® V. V. Varadan,! and A. Ishimaru®

(Received October 25, 1982; revised January 12, 1983; accepted January 12, 1983))

Attenuation of electromagnetic waves by a random distribution of pair-correlated dielectric spheres
is studied as a function of frequency and volume concentration of spheres. The main aim of this paper
is to compare theoretical results obtained using a self-consistent multiple-scattering formulation and
measured values of attenuation for latex spheres in water. The agreement between theory and experi-

ment is very good.

INTRODUCTION

A discrete random medium is defined here as a
random distribution of a large number of identical
pair-correlated scatterers embedded in an infinite ho-
mogeneous matrix medium. The fractional volume
concentration ¢ is assumed uniform, and the effects of
pair correlation are described by the radial distri-
bution functions arising in the statistical-mechanical
treatment of dense gases and liquids. We consider
plane wave propagation through such a model
random medium with attention being focused on the
coherent (or ensemble averaged) wave attenuation.
The discrete random medium is then characterized
by an effective, complex wave number K, or equiva-
lently, by an effective dielectric constant. If the scat-
terers and the matrix medium are assumed lossless,
then the coherent wave attenuation is caused by scat-
tering, and it is of great interest to determine the
wave frequency and scatterer concentration for
which multiple-scattering effects dominate. Extensive
work by Twersky (1977, 1978a, b, ¢, 1982] has laid
the foundation for multiple-scattering theory in dis-
crete random media. A related approach using the T
matrix of a single scatterer [Varadan and Varadan,
1980a] together with configurational averaging pro-
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cedures has been used by the authors to develop a
computational method for handling acoustic, electro-
magnetic, and elastic waves [Varadan et al., 1979,
1982; Varadan and Varadan, 1980a, b; Bringi et al.,
1981, 1982a, b]. Lax’s [1952] quasi-crystalline ap-
proximation (QCA) is used in conjunction with
various models for the radial distribution function
enabling passage to an average dielectric medium
whose properties depend on frequency, scatterer con-
centration, and the dielectric constants of both the
scatterers and the matrix medium. The intent of this
paper is to compare theoretical calculations of coher-
ent attenuation with optical experiments conducted
recently by Ishimaru and Kuga {1982]. Preliminary
comparisons between theory and experiment have
been reported [Bringi et al., 1982a, b], where the
single-scattering approximation is compared with
multiple-scattering calculations using various forms
for the radial distribution function (e.g., Matern and
Percus-Yevick models).

In this paper we provide an outline of the
multiple-scattering theory followed by a brief dis-
cussion of the self-consistent radial distribution func-
tion used in the computations. This is followed by
calculation of coherent wave attenuation as a func-
tion of scatterer concentration (0 < ¢ <04) for a
number of wave frequencies (0 < ka < 7) coinciding
with the experimental setup of Ishimaru and Kuga
(1982]. Finally, previous computations presented by
Bringi et al. [1981] corresponding to the experiments
of Hawley et al. [1967] are discussed in the light of
the results presented here,

OUTLINE OF THEORY

Consider an incident TEM wave propagating in an
infinite lossless, background medium of ¢,,, uo, which
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is filled with a random distribution of identical
dielectric spheres of ¢, uo. The total dielectric field at
any point in the background medium is the sum of
the incident field and the fields scattered by all the
scatterers,

N
En=E"@M+ LEr-r) ]

i=1
where Ej(r — r) is the ficld scattered by the ith scat-
terer at the observation point r and r; is the position
of the ith scatterer. The field that excites the ith scat-
terer, however, is the incident field plus the fields
scattered from all the other scatterers. The term ex-
citing field, E*, is used to distinguish between the field
actually incident on a scatterer and the external inci-
dent field E'™ produced by a source at infinity. Thus
at a point r in the vicinity of the ith scatterer, the

exciting field is expressed as
N
EM=E~0+ Y Eir—r) (P3]
j®1
From (1) and (2) we note that
E(r) = E{(r) + E{(1) 3

so that the exciting and scattered fields must be de-
fined in a self-consistent manner. Waterman's T
matrix formalism is used to relate the exciting and
scattered field expansion coefficients (the fields are
expanded using the vector spherical functions as a
basis). Configurational averaging is performed in (2)
as described by Varadan et al. [1979]. The T matrix
together with the QCA is used to generate a homoge-
neous system of equations whose singular solutions
yield the average propagation constant (K = K, +
JK,) for the discrete random medium. The system of
equations is given below, and the reader is referred to
Bringi et al. (1981], Varadan et al. [1979, 1982), and
Varadan and Varadan [1980a] for full details.

Yﬂ= z Z Z U”)z
a=] p=)l A=|n-m|
(LY, Tapw(n, m, A) + Z, T2 )Wn, m, )] (4a)
Z,=Y L I um,

n=l p=t Axjn-mi

(=Y, Tapx(n,m 2) + Z,T2y(n, m, 4)] (4b)
where
6¢
(JH), =

(ka)* — (Ka)?
- [2kaj (2Ka)h(2ka) — 2K ah,(2ka)j;(2K a)]

+ 24¢ f x2{g(x) — 1}h,(2kax)j (2K ax) dx (4¢)
1

In (4a) and (4b), Y,, and Z,, are the unknown ampli-
tudes of the average exciting field, T,, refers to the
elements of the T matrix for a sphere, and the func-
tions  and y are defined by Bringi et al. [1981]. In
(4¢), g(x) is the radial distribution function; j; and h,
arc the spherical Bessel functions, and the primes
denote differentiation with respect to the argument; &
is the wave number of the background medium; a is
the scatterer radius; and c is the fractional con-
centration of the scatterers. Assuming that g(x), ka, c,
and the T matrix are known, the singular value of
the coefficient matrix generated from (4) can be
solved for the average propagation constant K =

RADIAL DISTRIBUTION FUNCTION

The discrete random medium is considered as a
statistical ensemble of impenetrable spheres. In the
statistical mechanics literature this is synonymous
with an ensemble of ‘hard’ spheres. The radial distri-
bution g(r) is defined in terms of the two-particle
joint probability density p(r, |r,) defined as

1
P(fjlf:)=79“|'/"ll) e,—rl22a

(5)
prir)=0
Equation (5) implies that the particles are hard (no
interpenetration) and the excluded volume is a sphere
of radius a although the particles themselves may be
nonspherical. The function g(r), (r = r;)), is called the
pair correlation function and depends only on
Ir;;| = [r; — r;| because of translational invariance of
the system under consideration. Several theories and
calculations are available for determining g(r),
namely, the hypernetted-chain equation, the Percus-
Yevick approximation (P-YA), the self-consistent ap-
proximation, Monte Carlo calculations, etc. These
approaches are described by McQuarrie [1976], but
the reader is referred to any standard text on statis-
tical mechanics for full details.

The pair correlation function for an ensemble of
particles depends on the nature and range of the in-
terparticle forces. The average of several measure-
ments of a statistical variable that characterizes an
ensemble will depend on the pair correlation func-
tion. To obtain expressions for the pair correlation
function, one needs a description of the interparticle

le;—rl<2a
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forces. In our case, we assume that the scatterers
behave like effective hard (impenetrable) spheres.
Percus and Yevick [1958] have obtained an approxi-
mate integral equation for the pair correlation func-
tion of a classical fluid in equilibrium. Wertheim
[1963] has obtained a series solution of the integral
equation for an ensemble of hard spheres. The statis-
tics of the fluid are then the same as those of the
ensemble of discrete hard particles that we are con-
sidering.

Although integral expressions for the correlation
functions also result in a hierarchy, Percus and Yerick
[1958] have truncated the hierarchy by making cer-
tain approximations that result in a self-consistent
relation between the pair correlation function g(r)
and the direct correlation function C(r). The direct
correlation can be defined to be the direct effect of
scatterer 1 on 2 which roughly has the range of the
interparticle potential and also an indirect effect due
to the effect of 1 on 3 which in turn has an effect on
2. Since 3 can be any scatterer of the system, it will
include a sum on all scatterers and an integration
over the volume of the system. Fisher [1965] com-
ments that the P-YA is a strong statement of the
extremely short range nature of the direct correlation
function. For impenetrable spheres, the range of the
interparticle potential is 2a. The integral equation
has the form (see Percus and Yerick, 1958] given by

) =1+n, J‘ A(r) dr' — ng J. wrytr — ry dr’

r<2a
r<la
le=rr|>2a
(6)
where

tr) = g(r) r>2a

gtry =0 r<la
]

ry= —-C(r) r<la
Cirn=90 r>2a

Wertheim [1963] has solved the integral equation by

Laplace transformation that results in an analytic ex-

pression for C(r) in the form

Ciry = ~(1 —m *[(t + 2m)* — 6n(1 + §n)*r
+nl+2m%2] p=c8 (8)

where c is the effective spherical concentration of the
particles. The P-YA fails as the concentration ap-
proaches the close packing factor for spheres and is
expected to be good for ¢ < 0.3 or 0.4,
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Fig. 1. The Percus-Yevick (P-YA) pair correlation function for
*hard’ spheres.

Equation (8) can be substituted back into (6) to
yield a series solution for g(r) in the form [see
Wertheim, 1963]

g =Y g\n 9
a=1
where
1
9ur) = = J- e ML | SOt de {10)
24r,

S = (1= n3® + 6m(l — me? + 1892t — 12001 + 29} (11)

Ly = 12001 + > + (1 + 2] (12)

Throop and Bearman [1965] have tabulated g(r} as a
function of r for values of n =c¢/8. A few repre-
sentative plots of the Percus-Yevick (P-Y) pair corre-
lation function are shown in Figure 1.

Another approximation to g(r) is the hypernetted-
chain equation (HNC) which differs from the P-YA
in that the direct correlation function C(r) has a
longer range. In general, P-YA is expected to be
better than HNC. The P-Y and HNC results are
good approximations to g(r) at low concentrations
but are appreciably in error at high concentrations.

At low concentrations, a series expansion can be
obtained from (6) by iterating in powers of n,. This
power series in density is the virial expansion and has
been used at low frequencies by Twersky [1977.
1978a, b, ¢], Bringi et al. [1981, 1982a. b). and
Varadan et ul. [1982]. For the leading terms, (6) is
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Fig. 2. The P-YA, hole correction, virial expansion pair corre-
lation functions, and pair correlation functions based on module
histogram for impenetrable spheres.

written as [see Percus and Yevick, 1958]

ty=1+n Ifz.\fzs(fu - D) dry

+ ng jfz:fu'z:ﬁ.\ dry (13)
with
fi=-1 el < 2a
fi;i=0 Ir;l>2a

Commencing at t,, = 1, one can readily iterate a
power series to obtain

ty=1+ng ffnfu dey + ”(z)f [f23 fsa f1a

+ 2 fisfiafral drydey + - (14)

For hard spheres, g(r) can be determined exactly to
Otn3) [see Percus and Yevick, 1958; Twersky, 1977,
1978a, b. ¢] given by

gin=1 r>2a

3r r

4rn s
g",=l+?ano { - —

4a+_la") a<r<2a (15)

giry =0 r<a

but a slight discrepancy has been observed in O(ng)
(see McQuarrie, 1976] because of the approximation
in the P-YA. The variation of ¢(r) in terms of virial
expansion is shown in Figure 2. At low frequencies, a
relatively simpler form of g(r) given in terms of trig-
onometrical functions as shown in Figure 2 may also
be used.

At higher concentrations, the values of ¢(r) using

the P-YA are in appreciable error. The reason for
this error is that when an approximate theory such
as P-YA for g(r) is used to calculate the pressure, two
different values are obtained from the pressure equa-
tion and the compressibility equation:

1 no
= N, — (e—V(r)rK,T - I{J. n'r(l’, n,) dﬂ'] df
p KoT { o J. \
p=n KIT[I + j%" to(r)r - Ve~ Vi KeT dr]

where K, is the Boltzmann constant and T is the
system temperature. For hard spheres,

(16)

V(i) = o fe] <2a

an

Viey=0 Ir| > 2a

which shows that the system is independent of tem-
perature but depends only on number density or con-
centration. An exact theory for g(r) should give the
same calculated pressure from both equations. Row-
linson [1965] has suggested a method known as the
self-consistent approximation (SCA) for optimizing
the P-YA and removing the inconsistency in the two
pressure equations (16) by assuming that the direct
correlation function may be written as

Cscalr) = Cpyalr) + OCyncdr) (18)

where @ is an adjustable parameter which depends
on concentration but not on separation r and Cgc, is
the self-consistent approximation of the direct corre-
lation function. Using (7) and (18). the two pressure
equations (16) that depend on g(r) are solved self-
consistently by adjusting the function @ and lead to
an integral equation for g(r) which is then solved
numerically. At higher concentrations, the SCA is
thus an improvement over the P-YA and HNC ap-
proximation. From (18) it is obvious that when
@ =0, {18) reduces to the P-YA, whereas if ® = 1. it
gives the HNC approximation. Reed and Gubbins
{1973] have provided tabulated values of ggc(r) for
0.0524 < ¢ <0417 and for 1.0 £ r < 5.0, and a gen-
eral computer program for computing ggca is given
by McQuarrie [1976]. Tabulated values of gsc.(r) are
also given by Warrs and Henderson [1969], but they
are not useful for computations because the values of
g are given only for a short range of r. Monte Carlo
calculations for ¢(r) are done, and their values are
tabulated by Barker und Henderson [1971]. they
cannot be used for computations for the same rea-
sons. However. the values given by Barker and Hen-
derson (19711 provide a very good check for higher-
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Extensive propagation experiments have been con-
ducted by Ishimaru and Kuga [1982] where the dis-
crete random medium comprises a collection of
nearly identical latex spheres embedded in water and
illuminated with a HeNe laser (4 = 0.6328 m). The
coherent wave attenuation is measured over a range
of concentrations (up to 40°:) and for a number of
equivalent particle sizes (low, Mie, and optical ka
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Fig. 3. Im (K k) versus concentration using the self-consistent

radial distribution function.

medium. Figure 4 shows computations of Im (K/k) as
a function of concentration for ka values of 0.529 and
0.681 together with the experimental points of Ishi-
maru and Kuga [1982). Note that the original experi-
mental points have been converted to Im (K/k) by
using a normalization value described by Ishimaru
and Kuga [1982). The comparison between theory
and experiment is seen to be excellent even at high
concentrations. In Figure 5 we show computations of
Im (K/k) versus concentration of ka values of 3.518
and 7.28. Again the experimental points are seen to
be in excellent agreement with the computations.
Even though the experiments were not conducted at
¢ > 10% at these ka values, the behavior of Im (K k)
is correctly reproduced by the self-consistent radial
distribution function. In Figure 6 we compare our
computations with the experimental results of Ishi-
maru and Kuga [1982]. The parameter ; = 2K, 'ny 0,
where K, = Im (K). ny is the number density, and o,
is the extinction cross section of a single sphere. We
remark that nyo, is the approximate value of the
attenuation at very low concentrations. Hence the
parameter ; is the attenuation at any concentration
normalized to the low concentration limit. Thus, as
¢— 0, 7 -+ 1. Further, as explained by Ishimuru and
Kuga [1982], since the latex spheres used in the ex-
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and Kuga [1982]. The comparison between theory
and experiment is seen to be excellent even at high
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Fig. 6. Plot of y = 2 Im K/ny 0, versus concentration where nq
is the number density and g, is the extinction cross section of a
single sphere with relevant ka.

periment were not exactly identical, the measured
value of the attenuation at ¢ < 0.0038 did not exactly
correspond to n,6, where o, was computed at the
average measured radius of the sphere. In order to
take care of this discrepancy, the measured value of
the attenuation x at low values of ¢ was used to
define the effective radius a . of a sphere which pre-
dicts the correct attenuation in the single-scattering
approximation. All experimental results were nor-
malized with respect to x5 = nga(a.,) and y = x/2,.
Thus in all comparisons we have also normalized the
computed value of x by x, using the effective radius
supplied in Table I of Ishimaru and Kuga [1982]. The
computations are in excellent agreement with experi-
ment for ka values of 3.518 and 7.28 (see Figure 6).
Note the sharp decrease in y for ¢ = 10%, especially
for the ka value of 7.28. The dramatic importance of
multiple scattering is seen clearly from Figure 6 for
¢ > 1%: this value of c. however, depends on ka.

In our previous paper [Bringi et al., 1982a, b] we
observed that at higher values of ka, a less rigor-
ous form for the radial distribution function
glr) = 1,(1 — ¢} may suffice even at relatively high
concentrations (¢ > 40%). It is important to note
that at wavelengths comparable to obstacle size and
higher, the scattering is mostly in the forward direc-
tion. Thus, in this case, repeated scattering should
not be important, since the backscattered wave is
significantly smaller than the forward scattered wave.
This may explain why the computations shown in
Figure 7 for ku = 11.8 are in reasonable agreement
with the experiment done by Hawley et al. at higher
values of concentrations. It should be noted that the
P-YA and SCA fai!l as the concentration approaches

Concentration ¢

Fig. 7. Attenuation constant 2 Im (K'k) versus concentration
for ka =118 using the *well-stirred’ (eflective concentration)
radial distribution function. The experimental points are taken
from Hawley et al. [1967]).

the close packing factor for sphares and are expected
to be good for ¢ < 0.42%. Thus, based on the results
presented in Figure 7, the coherent wave attenuation
is less sensitive to the precise form of the pair corre-
lation function at high concentrations for relatively
high values of ka.

CONCLUSIONS

This paper has highlighted the comparison be-
tween theory and experiments for coherent wave at-
tenuation in a discrete random medium. Multiple-
scattering effects must be considered for volume con-
centrations exceeding around 1" especially for ka
values of <10. At higher concentrations (¢ < 40%)
and for ka < 10 the form of the radial distribution
function is very important. At values of ka > 10, cal-
culations show that the coherent wave attenuation is
less sensitive to the precise form of the radial distri-
bution function. Computations and experimental re-
sults suggest that at high ka values the simple *well-
stirred” approximation for the radial distribution
function (g(r) = 11 —c¢) r<2a: gir) =0, r>2a)
may suffice even up to high concentrations. The the-
oretical procedure described in this paper agrees very
well with experiments over a wide range of con-
centrations and ka values, 0 <¢ <40 and
0 < ka <10. Of course, these conclusions also
depend on the scatterer properties relative to the em-
bedding medium.
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= Coherent attenuation of acoustic waves by pair-correlated random H ﬁ
-, distribution of scatterers with uniform and Gaussian size 0
% distributions -

V.K. Varadan, V. N. Bringi,” V. V. Varadan, and Y. Ma E
! z;l;; Propagation Group, Department of Engineering Mechanics, The Ohio State University, Columbus, Ohio

(Received 17 October 1982; accepted for publication 6 February 1983)

.- Acoustic wave attenuation due to multiple scattering in a two-phase medium consisting of a fluid
with embedded rigid, fluid, or elastic particles of varying sizes is discussed. The formulation,
involving the exciting and scattered fields of an incident acoustic plane wave, is based on the T-
matrix method. The propagation features of coherent waves in the mixture are described by the
dispersion equation which is derived by applying standard statistical approximations to the
discrete random medium. Special attention is focused on the pair-correlation function between
the scatterers using the self-consistent approximation (SCA) which seems better than the Percus-
Yevick approximation (PYA) when the volume fraction becomes significant. Besides deriving
low-frequency analytical results for coherent wave speed and attenuation, the dispersion equation
has been solved numerically for higher frequencies for particles with uniform and Gaussian size

L} D%

RSO

distributions.
PACS numbers: 43.20.Fn, 43.20. Hqg, 43.20.Bi

INTRODUCTION

A study of wave propagation in a multi-component flu-
id medium is helpful in analyzing the gross properties of the
mixture as a whole. The propagation and attenuation results
derived from a typical investigation yield data that are valu-
able in various practical situations.

In formulating the theory for sound propagation in a
fluid—particle mixture, two fundamentally different ap-
proaches have been followed in the literature. In the first
approach, the solid particles are treated as scattering centers
and a set of coupled equations is formulated to describe the
multiple scattering. By computing the acoustic fields result-
ing from this scattering phenomenon, one arrives at formu-
las for the bulk parameters characterizing the medium. In
the second approach, the field variables characterizing the
medium are related through usual conservation laws and the
response of the medium to incident acoustic pulses are de-
rived from nonequilibrium thermodynamic considerations
coupled with the hyperbolic nature of the governing system.
The results accrued from both these approaches are largely
seen to complement each other although a particular prob-
lem may entail selection of either of the procedures in prefer-
ence to the other.

For suspended particles, multiple scattering theory
combined with suitable statistical approximations lead to re-
sults that are valid for a wide range of frequencies. This ap-
proach takes account of the microscopic features of the scat-
terers, the effects of which are finally reflected in the
coherent wave analysis. Although rigorous theoretical in-
vestigations of the acoustic wave attenuation in a fluid—-parti-
cle medium can be traced to the work of Sewel,' systematic

“V. N. Bringi is with the Department of Electrical Engineering, Colorado
State University, Fort Collins, CO 80523.
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multiple scattering formulations capable of uniformly han-
dling both the asymptotic and intermediate frequency
ranges and based on realistic particle distributions and cor-
relation effects were developed only in the last few years.*™"?

In this paper the multiple scattering of acoustic waves
by suspended particles is described using the T-matrix (Wa-
terman ') to characterize the single scatterer response and a
configurational average over the random positions of the
particles. The method presented leads to a computational
scheme that is suitable for scatterers of arbitrary shape, ori-
entation, dense concentration, and at wavelengths compara:
ble to scatterer size. The complex, effective wavenumber in
the random medium is computed as a function of frequency.
It is observed that the results crucially depend on the volume
fraction ¢, and for ¢ > 0.1 the effects of the pair correlation
function for the given distribution is significant especially at
lower frequencies. Accordingly, improved pair correlation
functions using the self-consistent approximation (SCA)
have been incorporated into the numerical algorithm. The
SCA is a linear combination of the Percus-Yevick (PYA)
and the Hypernetted Chain (HNC) approximation to the
pair correlation function. This enables us to get numerical
results for ¢ ~0.35. Closed form expressions for the phase
velocity and attenuation are presented in the long wave-
length limit.

I. MULTIPLE SCATTERING FORMULATION

In the present study, the scatterers are assumed to be
either rigid, fluid, or elastic whose properties differ from the
embedding fluid medium, which, for all practical purposes,
will be assumed here to be inviscid liquid akin to seawater.
The present formulation deals with the multiple scattering
effects of the solid phase on the coherent wave attenuation.

¢. 1983 Acoustical Society of America 1941
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Consider .V identical, arbitrarily shaped random scat-
terers with smooth boundary surface § in an infinite fluid
medium which are referred to a coordinate system centered
at 0. The points O; and O, denote the centers of the ith and
Jth particles, respectively; and they are referred to the origin
by the spherical polar coordinates (r,, 8,, 4, ). Pis any point in
the medium outside the scatterers. Let a time harmonic
compressional wave of unit amplitude and frequency w be
incident on the scattering medium. Suppressing the time de-
pendence of all quantities, we represent the pressure field
corresponding to the incident wave in the form

¢0=e:kx' “)

where k is the acoustic wavenumber, k = w/c,. The sound
speed ¢, is given by (4,/p,)'/2, where A, and p, are the com-
pressibility and density of the fluid, respectively. We denote
the compressional and transverse wave speeds in the elastic
scatterer by ¢, and ¢, given by ¢, = (4 + 2u)/p]'’* and
¢, = [(u/p)])'"*, respectively, where A and  are Lamé’s con-
stants and p is the density. For a fluid scatterer, ¢, = [4 /
p)1'"?, where A and p are the compressibility and density of
the fluid, respectively.

The total pressure field at any point outside the scat-
terers is given by,

sir)=8°m+ Y éjr—r) 2)
i=1
whered j(r — r;) is the field scattered by the jth particle to the
point of observation r.
We now observe that the field 4 ; exciting the jth scat-
terer is the resultant of the incident field ¢ ° and the scattered
field from all other scatterers so that

hd
o, =08%+ Yoilr-r); a<|r—r(<2a, (3)
ikf
where a is the radius of the sphere circumscribing the solid
particle and the superscript e refers to the exciting field. We
also assume that the transparent spheres of radius a circum-
scribing each particle do not interpenetrate.

The multiple scattering formulation developed here is
based on the T-matrix approach, see for example, Varadan
and Varadan.'® We first expand the field quantities in terms
of spherical wavefunctions

Ou hy(kr)
[Re Wlmd] = [i,(kr’ ]tha(g'¢ )’ (4)

where A, are the spherical Hankel functions, Y,,,, the nor-
malized spherical harmonics, and j, the spherical Bessel
functions; o = e or o refers to the even or odd parity of the
angular dependence, / = 0,1,..; m = 0,1,...1.

As usual, the field quantities that are regular at the ori-
gin will involve the spherical function j, instead of #,. We
thus write

. )
sin=3% ¥ Y fin Ou¥i,,c-r,) (5)
(:()'n—-O,,._':
” 1
sm=S5 S Ya., Re?¥,,irr), 16}
Pi0m -0, -
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where g 0. is the known incident field coefficient, f,,., and

a,,, are the unknown scattered and exciting field coeffi-

cients, respectively. The exciting and scattered fields are

then related by

zallma Re 'pllma‘r-r])

ime

N
=81+ T S fims O Wi tr-r,). ®)

tey lmo
The T matrix'® can be used to relate the exciting and

scattered field coefficients pertaining to a single scatterer as
follows

f'lma = I‘Zdrllma.l'm'a’all'm‘d . (9’

The right- and left-hand sides of Eq. (8) refer to two
different origins (the centers of the ith and jth scatterers,
respectively). This is remedied by invoking the translation-
addition theorem for the spherical wave functions'® and the
orthogonality of these functions can be used to extract a set
of linear matrix equations for the exciting field coefficients.
The details of these steps have been described in Refs. 17-19.
Performing the above operations and further assuming that
the scatterers are identical we obtain for N— o,

i ik, e
allmo = almee /6’"0

+ (N_ l) z Z -n'm'd.l'm'o'a;'m'a'

I'mo "m0
X Ot 'mo'imo (I’, =T )- ( IO)
where ofr; — r,) is the translation matrix, the detailed form
of which is not presented here.
If the scatterers are not identical but there is a distribu-

tion of sizes, then we may replace T'in Eq. (10) by the average
T matrix (T ) defined as

(T) = f T(a)glaida, (a1

where g(a) is a function specifying the size distribution of
particles assuming that they are all of the same shape. In
order to further refine the calculations one may want to per-
form the average in Eq. (11) only after introducing the con-
figurational average since the nearest distance between par-
ticles is a function of their size. To a first approximation, we
canuse (T) in Eq. (10) and use @ the mean radius to describe
the particle size.

Il. CONFIGURATIONAL AVERAGE AND THE PAIR
CORRELATION FUNCTION

For a system with a large number of scatterers, it is
more meaningful to study the effective propagation charac-
teristics in the medium rather than the details of the multiple
scattering processes that take place. Thus a configurational
average is performed in Eq. 110) over the positions of all
particles except the jth which is assumed to be held fixed. We
thus have
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‘ (a"lm >1 = alm-e‘“u-"‘smo + (V- n z Z Tl’m’a'.l'm'u'

I'mo |"m°o”

X J.(a‘l “m"o° )ual'm‘a'.lma(r; —-r, W(l', [r] )dl",
(12)

where ( ), denotes the configuration average with the ith
scatterer held fixed and p(r, r,) is the conditional probability
distribution function.

Equation (12) is a hierarchy which when iterated will
involve higher conditional probability distribution func-
tions. The hierarchy is truncated by invoking the quasi-crys-
talline approximation (QCA) first suggested by Lax** which
works surprisingly well for a wide range of concentrations.
According to the QCA

<a‘;'m'a' )ij = (a;'m'o' )i' (13)

To study the coherent or average field in the effective
medium, we assume that the average field is a plane wave
propagating in the same direction k, =2 as the original
plane wave but with a complex propagation constant
K = K, + iK, which is frequency dependent. The real part
K, is related to the phase velocity and X ,, the imaginary part
is proportional to the attenuation constant. Thus

(a;mo ): = leoelxz.r" ( 14)

In order to complete the integration in Eq. (12), the joint

" probability function must be specified. It is convenient to

write

gx)/V,

Pirr) = e x>1

y x<l, (t5)

where we have assumed that the particles are impenetrable

. and that for a translationally invariant system, P (r,|r, ) de-

pendsonly on r, — r;| = 2ax where 2a is the hard core radi-
us or the minimum distance between particles, each of radius
a. In the statistical mechanics literature g{x) is known as the
radial distribution function.

Equations (13)-{15) are substituted in Eq. (12} and the
extinction theorem can be invoked to cancel the incident
wave term on the right-hand side of Eq. (12) with part of the
second term (refer to Ref. 18 for details). The resulting equa-
tion is

Xloc = ;: Zrl'oc.l'otxl'ot

[

X P12+ 1a(0,07i0,0 |A WH,
A= 1~
x ({6c/[(ka)? — (KaPl} + 24cl,), (16)
© where
JH, = 2kaj,i2Ka)h (2ka) — 2Kah,(2ka)j,(2Ka), (17
al0,0"10.0'A) =124 + )[448 ]2 (18)

114

where [445 ] is the Wigner 3- j symbol.'®

I, =f x [ gix) = 1]j.12Kax)h,(2kax\dx, (19
[

" and ¢ = (47/31a' ¥V /V is the fractional volume occupied by

the particles.
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Equation (16) is a system of linear simultaneous equa-
tions for the coefficients X,. For a nontrivial solution of the
coherent field we must require the determinant of the coeffi-
cient matrix to vanish. This is the required dispersion equa-
tion which can be solved for the effective propagation con-
stant K asa function of k = w/c,and c. The determination of
K from Eq. {16} is necessarily numerical except in the long
wavelength limit. This will be discussed in the next section.
We now proceed to discuss the forms of g(x) that will be used
to numerically evaluate /, .

Several models of g(x) are available. For uncorrelated,
impenetrable particles

/(1 —¢),

x>1
glx) = 0

, x<l. (20)
This approximation for g{x) refers to Talbot and Willis,*'
known as the well-stirred approximation (WSA), and is ex-
pected to be valid for low values of ¢, and as discussed by
Bringi et al.,’ fails at ¢ > 0.125. For concentrations ¢ < 0.125,
there is an analytical form for g(x) due to Matern.*? Twersky®
has used a virial expansion to obtain g(x) shown as

0! X<l
gx)=11+8(l ~jx+4x’), l<x<2 21)
1, x>2

which is valid at low concentrations.

Improved models of the pair correlation function valid
for concentrations up to 40% are the Percus-Yevick approx-
imation (PYA) and the Hypernetted-Chain approximation
(HNC). The Percus-Yevick model** has been solved analyti-
cally by Wertheim?* for the case of hard impenetrable parti-
cles. It is expected to be somewhat better than the HNC.*
One of the defects of the PYA is that the two equations that
can be derived for the pressure Pin a fluid containing “‘hard”
particles lead to different answers when the PY A for g{x) are
substituted in them (these equations are derived by Percus™).
Rowlinson*® remedied this by assuming that the direct cor-
relation function which is the short range part of the correla-
tion function is a linear combination of the ones resulting
from the PYA and HNC models. They were combined with
an adjustable parameter ¢ and the two pressure equations
were solved simultaneously for P and é. This is called the
self-consistent approximation {SCA) and it is valid for higher
concentrations than the PYA and HNC models.

ll. RAYLEIGH LIMIT SOLUTION

The dispersion relation derived from Eq. (16) can be
solved in detail to predict the attenuation features and wave
speeds of coherent acoustic waves in the two-phase medium.
Although the system of equations requires a numerical ap-
proach to yield solutions for higher values of frequency, ana-
lytical results can be obtained for low-frequency approxima-
tions. Including the effects of correlation between particles it
is seen that an attenuation factor is obtained even in the low-
frequency approximation. Analytical results are seen to
mainly depend on the form of the correlation assumed. Us-
ing, for example, the g(x) given by the virial series, Eq. 121},
and for leading order in (ka), dispersion equations can be
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derived from Eq. (16) for all the three types of scatterers,
namely rigid, fluid, and elastic spheres. We get for the real
and imaginary parts of the effective wavenumber

(K/k) = (1 + ac)(1 — Be)/(1 + 2Bc) (22)
and
2(K,/K,) = ka)*(1 — 8¢ + 34¢?)
x [@?/(1 + ac) + 38%/(1 + 2Bc)(1 - Be))/3,

(23)
where
[ —1 rigid
P
a=4pes G(@), fluid sphere,
2 -1
[(&) - 4pes ] -1 elastic
L Prct 3psc;
(24)
[— rigid
Pr—P
B={pP,+2%} G(@), fluidsphere.
Pr—P ;
— elastic
Lpr+ 2%

For a uniform size distribution G (@) = 1, while for the Gaus-
sian size distribution G (a) is given by

car=s1 L)oo 22 Yo
)
(Eon(- Lo

a
+0.5 [1 + en(%)] (25)

where m is the standard deviation. When the concentration
is higher than about 5% the term (1 — 8¢ + 34c¢?)is replaced
by (1 — ¢)*/(1 + 2¢)?in Eq. (23) to correct for the higher con-
centration using the Ornstein-Zernike equation® for g(x). At
low frequencies the attenuation is due to multiple scattering
alone since the scatterers are assumed lossiess. However,
losses due to other factors such as viscosity, friction, etc.,
may dominate the scattering losses (which are proportional
to k *a*) at low frequencies. At higher frequencies, the multi-

* plescattering losses increase significantly and may dominate
~- the viscous or frictional losses. Methods of introducing these

additional loss mechanisms into the current theory are un-
der investigation by the authors.

IV. PHASE VELOCITY AND ATTENUATION AT HIGHER
FREQUENCIES

The analytical expressions for wave speed and attenu-

" ation factor as obtained above coul be derived only for very
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Al e e

ka=0.05

(o g — - — : -

r i

T 1

- ]

L i

| i

=i0* L- .
2 1
E ]
’ 4

1

-
[

7 t 1
“o.

1 i i a1l 1
05 010 05 020 025 030 035
Concentration ¢

FIG. 1. Coherent wave attenuation versus concentration for ka = 0.05 for
rigid spheres embedded in water.

low values of ka as higher approximations would lead to
unwieldy expressions. A quantitative estimate of the multi-
ple scattering process at resonant and higher frequencies can
be obtained by numerically solving the dispersion equation,

Eq. (16). In fact, detailed numerical results can be obtained

for rigid, fluid, or elastic scatterers of different geometries as
the only additional input parameter in such cases is the ap-
propriate T matrix. The computational scheme has been de-
scribed previously and will not be repeated here.?”-*®
Essentially, the solution of the dispersion equation de-
rived from Eq. (16) valid at higher frequencies involves an
iterative procedure for determining the dominant root in the
complex plane in terms of ka. Although the algorithm used
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F1G. 2. Attenuation in dB/ft versus concentration for rigid spheres for
ka = 0.6.
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=+ appears to be insensitive to considerable deviations from the o ]
™ true solution, good initial values are provided by the low- t ' " T L - !

. frequency results of the previous section. As expected, the " Elostic Sphere  kg=0 C¢?1500™8 =
:‘_{ order of the coefficient matrix that has to be retained in the r g:- g?z?"?."

amplitude equations for a convergent solution is directly
proportional to the frequency. The same is also true with
l respect to the size of 7 matrix.

In Fig. 1 we show the imaginary part of the propagation
constant K /k for rigid spheres immersed in water with
ka = 0.05 where k is the wavenumber of the incident acous-
tic wave in water. The curve depicts the correct functional
form for K, vs ¢ and shows a broad maximum in the range
0.15 <c <0.20. At higher concentrations, the attenuation
F decreases implying that the random medium appears more
.. homogeneous with “restricted” randomness. In the limit full
packing (¢==0.64 for spheres), the attenuation should attain a

fixed value consistent with a bulk rigid medium. The form G 1
.. for gix) in the limit or full packing is not known, hence com- N Ame e :
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o In Fig. 2 we show a similar plot of coherent attenuation Concentration c
- i« versus concentration for rigid spheres in water for compari-
| " sonwith measurements conducted by Hampton.** Note that
; the ordinate scale is in dB per foot where dB/ft = 1109(K,/
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FIG. 10. Attenuation coefficient versus concentration for elastic spheres
with Gaussian size distributions.

experimental points are shown by circles in Fig. 2). His ex-

-, periments involved clay particles in a polydisperse distribu-

- tions embedded in water with maximum ka values much
smaller than 0.6. Computation at such small ka values yield
_ attenuations which are much smaller than observed since K,
is of O (k *a®). We conclude that the experimentally observed
attenuation is due to loss mechanisms other than multiple
scattering. In any case the present computations agree favor-

“«. ably with experimental values at ka = 0.6 showing the ob-
. served functional dependence with increasing concentra-

tion. Note that the computed attenuation is due to multiple
scattering losses only. For c > 0.0, the single scattering ap-

> proximation significantly overestimates the attenuation, in-

creasing without limit as ¢ approaches dense packing. The
self-consistent form for g(x} appears most suitable for the full
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range of concentrations. In Fig. 3 we again show K,/k versus
concentration for ka = 1.0. Figure 4 shows the phase veloc-
ity in the bulk medium relative to the phase velocity of the
background medium in which the scatterers are embedded.
At higher concentrations there is evidence of dispersion as
seen by the separation of the ka = 0.5 and ka = 1.0 curves.
The bulk or composite medium supports *‘slow™ acoustic
waves when the scatterers are rigid.

Computations were also performed for fluid and elastic
scatterers with the only change in the computation occur-
ring as a result of the appropriate T matrix***' in Eq. (16).
The acoustic parameters of the fluid scatterers and the sur-
rounding fluid medium were chosentobep = 1.092g cm 2,
¢, = 1.64X10° cm/s, and p, = 0.021, ¢, = 1.55% 10%, re-
spectively, where p is the density and c is the sound veloc-
ity.”> These parameters are appropriate for red blood cells
{RBC} in isotonic plasma although a spherical model for the
RBC is an approximation. Figure 5 shows the computed
attenuation coefficient as a function of concentration for
ka = 0.6 and ka = 1.0 using the self-consistent pair-correla-
tion function. Note that the computed attenuation is due to
multiple scattering. In Fig. 6 we show the relative phase ve-
locity versus ¢ for ka = 0.6 and 1.0 using the self-consistent
model. The bulk medium now appears nondispersive and
supports “fast waves.” In Fig. 7, the phase velocity versus
concentration ¢ is shown for Gaussian size distribution (m/
a@ = 0.18 and 0.4) while the corresponding coherent attenu-
ation curves are shown in Fig. 8. In Figs. 9 and 10, the phase
velocity and coherent attenuation for elastic scatterers with
Gaussian and uniform size distributions are depicted. The
properties of the elastic scatterers are takenasc,/c, = 2.04,
p/p, =21
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appears to be insensitive to considerable deviations from the
true solution, good initial values are provided by the low-
frequency results of the previous section. As expected, the
order of the coefficient matrix that has to be retained in the
amplitude equations for a convergent solution is directly
proportional to the frequency. The same is also true with
respect to the size of T matrix.

In Fig. 1 we show the imaginary part of the propagation
constant K /k for rigid spheres immersed in water with
ka = 0.05 where k is the wavenumber of the incident acous-
tic wave in water. The curve depicts the correct functional

form for K, vs ¢ and shows a broad maximum in the range

0.15 <c <0.20. At higher concentrations, the attenuation
decreases implying that the random medium appears more
homogeneous with “restricted”” randomness. In the limit full
packing (c==0.64 for spheres), the attenuation should attain a
fixed value consistent with a bulk rigid medium. The form
for gix) in the limit or full packing is not known, hence com-
putations could not be performed.

In Fig. 2 we show a similar plot of coherent attenuation
versus concentration for rigid spheres in water for compari-
son with measurements conducted by Hampton.?® Note that
the ordinate scale is in dB per foot where dB/ft = 1109(X,/
k ). The value of ka is chosen to be 0.6 so as to yield computed
attenuation values in the range observed by Hampton (his
experimental points are shown by circles in Fig. 2). His ex-
periments involved clay particles in a polydisperse distribu-
tions embedded in water with maximum ka values much
smaller than 0.6. Computation at such small ka values yield
attenuations which are much smaller than observed since K,
is of O (k *a’). We conclude that the experimentally observed
attenuation is due to loss mechanisms other than multiple
scattering. In any case the present computations agree favor-
ably with experimental values at ka = 0.6 showing the ob-
served functional dependence with increasing concentra-
tion. Note that the computed attenuation is due to multiple
scattering losses only. For ¢ > 0.05, the single scattering ap-
proximation significantly overestimates the attenuation, in-
creasing without limit as ¢ approaches dense packing. The
self-consistent form for g{x) appears most suitable for the full
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range of concentrations. In Fig. 3 we again show K,/k versus
concentration for ka = 1.0. Figure 4 shows the phase veloc-
ity in the bulk medium relative to the phase velocity of the
background medium in which the scatterers are embedded.
At higher concentrations there is evidence of dispersion as
seen by the separation of the k@ = 0.5 and ka = 1.0 curves.
The bulk or composite medium supports “slow™ acoustic
waves when the scatterers are rigid.

Computations were also performed for fluid and elastic
scatterers with the only change in the computation occur-
ring as a result of the appropriate 7 matrix***' in Eq. (16).
The acoustic parameters of the fluid scatterers and the sur-
rounding fluid medium were chosentobep = 1.092gcm™*,
¢, = 1.64%10° cm/s, and p, = 0.021, ¢, = 155X 10°, re-
spectively, where p is the density and c is the sound veloc-
ity.’> These parameters are appropriate for red blood cells
{RBC) in isotonic plasma although a spherical model for the
RBC is an approximation. Figure 5 shows the computed
attenuation coefficient as a function of concentration for
ka = 0.6 and ka = 1.0 using the self—consistent pair-correla-
tion function. Note that the computed attenuation is due to
mulitiple scattering. In Fig. 6 we show the relative phase ve-
locity versus ¢ for ka = 0.6 and 1.0 using the self-consistent
model. The bulk medium now appears nondispersive and
supports “‘fast waves.” In Fig. 7, the phase velocity versus
concentration c is shown for Gaussian size distribution (m/
a = 0.18 and 0.4) while the corresponding coherent attenu-
ation curves are shown in Fig. 8. In Figs. 9 and 10. the phase
velocity and coherent attenuation for elastic scatterers with
Gaussian and uniform size distributions are depicted. The
properties of the elastic scatterers are taken as ¢, /c, = 2.04,
p/p, =21
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V. CONCLUSIONS
This paper has presented a T-matrix formulation of

multiple scattering of acoustic waves in a two-phase random
* medium. The dispersion equation, which characterizes the

propagation of coherent waves in the effective medium, is
derived by including the effects of pair-correlation. Explicit
expressions for the attenuation coefficient in the Rayleigh
limit are derived using the virial series expansion of the radi-

- al distribution function. Computations are performed for

rigid, fluid, and elastic spheres embedded in a fluid back-
ground medium using a number of models for the radial
distribution function. At high concentrations the self-consis-
tent model appears to give superior results based on a com-
parison with experimental obscrvations. The theory and
computational procedure developed in this paper should

. prove useful in dealing with acoustic wave propagation
" through ocean-bottom sediments, mixtures, and suspen-

sions and composite biological tissues.
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[ Wave propagation in pair-correlated particles
of varying size suspended in water

5 'R P

L Y. Ma, V.K. Varadan and V.V. Varadan
. Wave Propagation Group
Department of Engineering Mechanics
The Ohio State University, Columbus, Ohio 43210

ABSTRACT

Acoustic waves propagating through suspended materials with a con-

= siderable concentration (1%<w<40%) in the deep ocean environment is )
o examined. The particles in suspension have a size distribution and their ;
relative positions are described by the pair-correlation function. ;

- :
o Different equations representing the pair-correlation function are w
K

investigated. The characteristics of the multiple scattered waves are

APV

S

presented as the dispersion of the phase velocity specified by the real

v
A

part of the effective wave number K and the attenuation in wave intensity

shown as the loss tangent.
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The dependence of the wave propagation on the size distribution and

»m.
LA,

concentration of particles is also discussed in the low frequency range.

M gl |
LSRN




INTRODUCTION

An acoustic technique has been proposed to investigate the wave
propagation through the suspended sedimentary particles in a water
massl. The attenuation of acoustic waves by suspended materials in

a fluid medium has been investigated extensivelyz'4

and the experi-
mental attenuation coefficients were found to be compatible with those
derived from theory for low concentration cases. However, when the
concentration becomes higher the acoustic transmission and reflection
will be affected differently due to multiple scattering. The single
scattering theoryS which is suitable for a sparse distribution of scat-
terers (suspended particles) is no longer valid for a dense distribution
of scatterers since the higher order statistics known as the pair-
correlation6 will be required in the multiple scattering analysis. In
other words, in a medium containing a large number of scatterers the
position of one scatterer is constrained by the other therefore the
scattered field will be affected by such a crowding characterized by a
correlation function among scatterers.

The present study examines acoustic wave propagation through a
considerable concentration of sedimentary particles suspended in water.
The quasicrystalline7 assumption will be used to truncate the hierarchy
equations (Foldy-Lax hierarchys) so that only the pair-correlation between
two particles is considered. As can be seen the pair-correlation function
is essential in solving the coherent field. Therefore, the hole corrections,

. . 10 . .
the virial expans1on9 and the Percus-Yevick = equations representing the

pair-correlation function are discussed. However, it can be shown that
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all those equations will yield the similar results for moderate concen-
trations of scatterers in the low frequency range.

For practical purposes, a simpler form of the pair-correlation
function for elastic scatterers is given instead of the complex
Percus-Yevick equation. The scatterers with and without size distri-
butions are both treated in this study to judge their effects on the
wave propagation characteristics. The results presented as the dispersion
of the phase velocity as well as the attenuation against the concentration

are particularly in the low frequency range.

MPS PP RLY W U SV W P ST T

DTN E AR M e YAt A A ATIL AL Srv bt i S i e e

B
. . - » i
DN IO S

VY Pa

"

b

2acte v At ll

. '-l"‘ n .'l




STATEMENT OF THE PROBLEM

Consider a slab containing a large number of scatterers. A time-
harmonic plane wave of sound is normally incident upon the slab (see
Figure 1) along the negative z direction with the time dependence e+1Wt,

The incident wave with a unit amplitude can thus be expressed as

w(ﬁ) - eikz

where k = wave number.

The scatterers are suspended particles modelled as elastic spheres
whose properties are shown in Table 1. The surrounding acoustic medium
(covering slab) is water with the properties also shown in Table 1. In

the absence of scatterers from the medium, w(ﬁ) will then satisfy the

wave equation

Vzw + kzw = 0
However, the average field (coherent field) <q;>11 for any wave in a
medium containing random particles can generally be expressed by
assuming it satisfies the following wave equation specified by an ef-
fective wave numbers K(sometimes called propagation constant or bulk

parameter), i.e.,

72<$> + K2<g> =0

For low concentrations (the number of scatterers in the medium is

small and the distances between scatterers are large compared to the in-

cident wave length) the effective wave number K is well known aslé. hen

including the size distribution,
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K* = (ke @M + £(a,00)] (k52 E(a,m) - E(a,0))], (2)
where p = number density (number of scatterers per volume)
fGa,n) = .L: £(a,n) q(a)da
f(a,0) = .ﬁf £(a,0) q(a)da

q(a) = the size distribution function

f(a,n) the forward scattering functionl

f(a,o0) the backscattering function1

Lloyd and Berry13 modified the above equation using the multiple scattering

treatment as follows

2 2
K2 = k2+4wof(a,n) ML [—fz(a,ﬁ)+f2(a,0) -j.“ ——1——-—9-f2(e)de],
k2 o _. 1_ds
51n§a
(3)
where
® . n
f(e) = Z _§_2n_+_1).i(_—_ll P (COS 8)'
1+iC n
n=o n
Another frequently used equation for the effective wave number K
i5
is given as,
k¥ = kidnof (a,m) + (4mpf(a,m)° [, iFR SIMKR gipyap, (4)

where g(R) is the radial distribution function. Results using Egs.

(2), (3) and (4) will be examined in this paper.
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Equation (2) can be further reduced to the following form provided
. p<<1,
K = k8 + anpE@m) + 0 (0 (5)
- in which 0 ( ) represents the order of ( ). For small scatterers
ax and low concentrations a common form used by many investigators is
. obtained by expanding the square root of Eq. (5) as
. K=k + 2npf(a,n)/k (6)
One sees from Eq. (6) that K is actually a complex number due to
é; the fact that f(a,r) is complex. The real and imaginary parts of K are
) found to be
) KR =k + Zﬂpr(a,Tr)/k
. (7
KI = prflia,n'i/k,
where the subscripts R and I denote real and imaginary respectively.
!! By using the forward scattering theorem which is
_ A
A 05 - K fI(a,“)r (8)
-~ the imagninary part of K (also known as the attenuation constant) can
thus be related to the total scattering cross section g  as
- 2K, = po_ + (pca) 9)
=
| e In Eq. (9) 9, is the absorption cross section only if the scatterers are

absorbent (the absorption mechanisms can be introduced by using complex
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internal wave numbers in the scattering functions f(a,r) and f(a,o) or
it will not appear. The absorption effect for sedimentary particles is
small and can be neglected.1

Strictly speaking, Eqs. (5), (6), (7) and (9) can only be applied
to the low concentration cases. Each of the sparsely distributed scatterers
under such circumstance can be treated as independent scatterers, i.e.,
uncorrelated and without interference. Therefore the total scattering
is just the sum of the scattering from each scatterer which is the basis
of the single scattering theory. A question will arise as to how large a
concentration will make the single scattering invalid? The answer
depends on the type of scatterers being treated.1 However, a recent
experimental study by Ishimaru et.al.lS shows that when the concentration
is greater than about 0.1%, the experimental attenuation constant
departs markedly from that calculated by single scattering theory.

The term concentration used in this paper is defined as the
volumetric percentage which is the ratio between the total volume of
scatterers and the volume of the embedding medium. Since the spherical

scatterers are modelled as the suspended particles the concentration w is

thus represented as

w = 4=pa/3,

where a is the radius of the sphere and the overbar denotes the average
quantity.

To examine the effective wave number K for a dense distribution of
scatterers (high concentration) one needs to recall the Foldy-lLax hierarchy

for the coherent field holding more than one scatterers fixed. Fortunately,
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the problem can be simplified without going into higher order statistics
by using the quasicrystalline approximation to truncate the equations in
order that only the pair statistics between two scatterers is required in
evaluating the coherent field. Such a treatment is useful in which an
explicit approximation for the pair statistics, expressed as the pair
distribution function g(R) can be introduced to integrate over the total
volume to obtain the exciting coherent field. The second equation

in the Foldy-Lax hierarchy using the quasicrystalline approximation can

generally be written as
W R)>s = vy R v o f e R ROFEE < Ry, dR ER R (10)

where <w1(§j)>j = the average exciting field of the jth scatterers with

its position held fixed

—~
N
.
~—
il

the incident field at ﬁj

t(a,?) = |~ £(a,0 a)da
£(@,3) = [7 £(a,0) ala)
<Ql(§l)>i = the average exciting field of the ith scatterer with

its position held fixed
E(ﬁi-ﬁj) = propagation function of the scattered waves

dﬁi = 41R2dR for the radially symmetric scatterers
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SOLUTION FOR RADIALLY SYMMETRIC SCATTERERS

The effective wave number K for a dense distribution of pair-correlated

scatterers can be obtained using Eq. (10) as follows9

n

We~18

where n = K/k

n

(o)

A = kE (a,m) [1+] iA (n)

fn(a,ﬂ)

fn(a,n) =

.n+m|
H =)

nm

‘N -Mm:

<

P4
i

g (R)

dm(z;;)

2n

A n

n

-n+mH ]

nm
m=0

j;m fn(a,n) q(a)da = f;

(2n+1)i
1+iC
n
oo 47pi nm+n nm
dm (n§m) [ 3 > + Nm]
' k n -1

= dmp j;““ [g(R)-l]jm(KR)hnzl (kR)R°dR

spherical Bessel function

spherical Hankel function of the second kind

pair-correlation function
= Lergjendre cxpansion for

n+m

Pa(x)P (x) = T dq(2;2)P (x)

Pn(x), Pm(x), Pq(x) =

q=o n'm’ q

Lengendre polynomials

(11)

(12)
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dq(:;;) has the following properties :
dq(C:) = da(3;%)
do(ﬁ;;) + dl(:;;) ... 04 dq(:;;) =1 , q=mn %
d gaGin) =0 , men = even
de'ven(:\;::) =0 , m+n = odd —

For monopole and dipole cases

0.0 _ 0.0 -
dO(O’l) = 0 s dl(O,l) = 1

For the low frequency case, only the monopole (each scatterer, i.e.

e B L e

sphere, is compressed and expanded by the incident condensations and rare

factions and a spherical wave is thus radiated - this monopole type

N
! .

radiation is dominated by the compressibility of the scatterer and is

)

independent of directions) and dipole (the scatterer's inertia causes the

scatterers to have a motion which is equivalent to the surrounding medium

E s
mbakiaas: .

P

being at rest and the scatterer being in oscillation - this dipole type

i,

reradiation is affected by the density of the scatterer and depends on

S

TN TR PR AN
l N

. PR
. L,
ikt ot '3 2l

the scattering anglec 6) terms are important in doing the computation.
Therefore only two terms in Eq. (11) are required and a closed form solution

can be obtained. However, more terms are necessary in the high frequency

'

range which make the calculation for K a tedious job and only a numerical

L

approach is possible at the present time. This can be done by the

A

computer for a wide frequency range by selecting a suitable number terms

¢ oS,
bl

to achieve convergence. The acoustic scattering analysis for suspended

PO P P

particles in the high frequency range will be discussed in a later paper.
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Now one can compare Eq. (11) with Eq. (5) to see the difference. To

.-

study the wave propagation through a sparse distribution of scatterers

. does not involve the iterative solution for K which is instead required

‘N~

- for a dense distribution of pair-correlated scatterers. The effective

!! wave number K in a medium containing scatterers of low concentrations is

. essentially a slight perturbation of Eq. (11) with n=l. One also sees

: from Eq. (12) that in order to obtain Nm the pair-correlation function

;. (or the radial distribution function for the radially symmetric scatterers)
- g(R) needs to be specified first. If there is a closed form expression

5; for g(R), the computation can be made much easier depending on how simple

the form is.

R
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RADIAL DISTRIBUTION FUNCTION

Several radial distribution functions (for the radial symmetric
scatterers the pair correlation function g(R) is called the radial
distribution function g(R))14 have been applied successfully to analyze
the multiple scattering of waves by a random distribution of pair-correlated
scatterers. The commonly used hole correction equation has been proved
to be a poor approximation for appreciable concentrations. Twersky9 used
the virial expansion equation which is an iterative solution for the
Percus-Yevick equation for impenetrable scatterers to obtain the effective
wave number K for the low frequency range and moderate concentrations.

To make the calculation easier the following form is proposed to
avoid a more complex form in the expression of the Percus-Yevick equation.
That is

R <b!

0 ’
8 {10z BB i bty R b (13)

where A'(w), B'(w) and C'(w) are functions of the concentration w and b'
the separation distance (exclusion length) between two scatterers. For
different scatterers with different distributions A'(w), B'(w) and C'(w)
have different forms and are decided by the distribution measurements
from the field data. Generally speaking, the magnitudes of A'(w) and
C' (w) increases with the increasing concentration and that of B'{(w)
instead of increasing decreases as the concentration increases.

The idea in establishing Eq. (13) for g(R) is from the experimental

histogram of the radial distribution function for the manganese nodule

fields16 (nodules are elastic materials) and the Percus-Yevick equation.
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One sees that g(R) has the trend of decaying and oscillating about the
value one when the radial distance R is greater than the exclusion length
b(=2a). The asvmptotic value of g(R) is one when R is generally three

or four times larger than the exclusion length (see Figure 2).

For a moderate concentration, e.g. w=0.1, a comparison of g(R) using
different expressions is presented as Figure 3. As can be seen from the
figure, (in the range of 0<R<2b) the curves representing the Percus-Yevick
equation, the virial expansion and the proposed radial distribution function

which has the following form are very close to each other.

g(R)={° »  Rebd

1+0.3e'"(R'b)/bcos m(R-b)/2b , R > b(for W= o
As a matter of fact, the virial expansion of g(R) is the simplest one in
doing the calculation with a moderate concentration.
To calculate the effective wave number K, the equation of Nm(Eq.(IZ))

which involves the radial distribution function g(R) needs to be obtained

first. In general, Nm can be expressed as the following integral.

N, = 4moF (K,k) f: [g(R)-1]R%dR (14)

where F(K,k) is the function of the effective wave number K and the incident
wave number k. Eq. (14) is generated due to the ascending series expansion

of jm(KR) and h;z)(kR) in Eq. (12) as follows

2v

. _ v DV@mev) !X
ipX) = 2t X z vi(2Zm+2v+1)!
v=0

2 . .
hy © (X)) = 3, - iy (X (15)
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Y (X) = 1 E F(Zm-2v+l)X2v

N mm— 7 =
. m 2mxuwl veo m!T (m-v+l)
) where T () is the Gamma function.
ﬁ&: In general, the integral
" 1% = [ ¥ [g(R)-1]R"dR (16)
- o

can be expressed as a recurssion formular which is useful in obtaining
the iterative solution using the computer. A recurssion formular of

Eq. (16) using Eq. (13) for g(R) can be expressed as

@ o 0%
= " a+l ,
- where
- Py -R? -h!
. T =J. e B'(R-b )cos C'(R-b')RadR
N i
- * -
iz = 1 [B'(")°% + Bt crar (1))
- B'+C'
" L A S Lt
2 - 2y
B B'“+C'
-
- * ~C?
- T ° = ?C—z
B".,,C'
P
o
- For moderate concentrations the expression of I* using the virial
i expansion for g(R) is
[0
- ° = -(1+8w) —22?1 + 8w[—(z}—)l-w’.1 + 3b +1(1_20+2) + b0‘4’1(20‘4’4'1)]
oo a+l a+l 4(a+2) 16 (a+d) ’
| ¥
f'l
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where b = 2a. For the lowest order of m in Eq. (15), which is useful in
the low frequency scattering for monopole and dipole case, Ni is obtained

as

N tmp1° (17)

-8w + 34w2

which is the same result as Eq. (28) of Ref. 9.
For the low frequency scattering, an exact form of N; by using the

Ornstein-Zerwike equation is

4
N; = 471’me [g(R)-l]RZdR = %-%‘);)2 -1 (18)

which can be shown to be the same as Eq. (17) when the higher order terms

(0(w3)) are neglected after the expansion of Eq. (18).
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APPROXIMATION IN THE LOW FREQUENCY RANGE

¥
[LECN. VO By )

) In the present study the suspended sedimentary particles are in

uf general 2 to 4 microns in radius which make the nondimensional frequency

’
(4
F VOO R

ka in the range of 0.01 to 0.1 when using the ultrasonic wave of the

- |
- frequency 1.2 to 12 megahertz. It is known that in the low frequency
Rayleigh limit (ka<<l) only the monopole (n=0) and dipole (n=1) terms
dominate the solution for the effective wave number K in Eq. (11). Thus
; Eq. (11) can be rewritten as
. 2 2 4 2
- K© = k% + 35 (a; + AD) (19)
L
or
4mp
1+ — A
K2 i W o
. - 4_1”3)' A
k
ff where
.;;, Ay = kB [1+iAgH o+ iAnH )]
z A | .
A, = kf1 1+ iAyn H10-+1A1H11]
| ol 2
= Hyg = No * 1N
<y P
= Hop = Hypo = Ny * 14
_ 1 4wp . 2 1 a2
H, = 3 [__§1+-H00] +3 [N2 + 1N2 ]
ii
e
u
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- In the low frequency range, A0 and A1 can be approximated by9
| 20
o Ao = —
3 4
N I-1a0h
- _ (20)
. ) a
1
; Ap = T )
- 1 4?7? i]; - i!'-i W
- k 3 3
:;:3 where
- W ~ 1+ 417pf“’ {g(R)-l]deR
G o
= - © i
= 3 =S, T a@da
A =" 2L a)d ]
1 'f 1+ic, 4ql&/ca 5
o 1 -
P "4
. _ } ) .
The limiting values of a, and a, for ka<<l are, respectively 4
o a. =Da.  G(a)i fluid spheres 1
N O Of ’ :‘
3
| .
~ a, = -3Da  G(a)i ]
1 1f
a, = D(-1)G()i , rigid spheres N
74
= 4
- - o R ]
al = -3D —7 G(a)l ':i
-t - = - . . -]
a, Da, G (a) i ) elastic spheres
Q) -
- - - .
| a, = -3DalfG(a) i .
o 4
3 2
s::: :
o >
e e R R e e T I L T
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3
D = (ka)"/3
G(a) = the size distribution factor
20 = 1/e - 1
aje = (1-g) / (1+2g)
1
a = -1
Oe 4
e-g el
e = g(C./C)°
= 8%/ %0
e, = 8(C/Cy)°
1 T 0
a = mean size (radius)
g = density ratio between the scatterer and the surrounding medium
Css C;, C. = wave speed in the surrounding medium, compressional wave

0’ "L T

speed in the scatterer, shear wave speed in the scatterer.

One sees from Eqs. (19) and (20) that the effective wave number K is a

complex number and can be written as

K = KR + iKI, (KI > 0).

In general, the real part of K(KR) is much greater than the imaginary part
of K(KI) and Eq. (19) can thus be rewritten as, after separating the real

and imaginary part of K,

(ki 2 . (1sws)(l-wt) (21)

1+2wt

e Ty M T T T OTRYL T
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(S 1
o 1
- 2K 2 2 i
I . 2 ] 3t

. e AR A T el (22) |
1
where :
ay¢ ) fluid :
» s=(-1) G(a) , rigid sphere i
S a elastic 3
H oe K
- e fluid J
K 1 .
t= (-EJ G(a) , rigid sphere -
;_ alf elastic 5
= .
. For a uniform size distribution, i.e., G(a)=1, the results of (21) ?
= and (22) are identical to Eq. (73)9 obtained by Twersky. j
li Based on Eqs. (21) and (22) the normalized phase velocity KR/k and i
the loss tangent 2KI/KR are calculated for waves propagating through the .
P
water containing suspended particles, modelled as elastic spheres. f

When the concentration is higher than about 5% the term (1-8w+34w2) is

replaced by (1-w)4/(1+2w)2 in Eq. (22) to correct for the higher concen-

)

e 4

tration in calculating the loss tangent. The rigid scatterers are also

T
o
| ) used in the calculation for comparison purpose and in this case Eq. (11)
-

becomes

2 2 w.2 ika)d 1 wi-w® 2
K = k% o+ B k@) L WU a0k (23)
2 3 4 2

- (1+2w)
by which is Twersky's Eq. (75)9 for uniform size scatterers. The size
" distribution factor is considered to be from the Gaussian size distribution
e and in this case is1
- L. 2 1 a2, 142 m3 3. L@ on, g 13,2
. G(a) = 7 () (1+3(2)7) (D7 + 52-e" 5™m) (D7 + — S R (24)
: B a a v2a < Mm a
o 1 1a

where m = the standard deviation. + gll+erf (}gg))
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RESULTS AND DISCUSSIONS
- The acoustic wave propagating through a fluid medium containing

~ a random distribution of suspended particulats with & considerable

concentration is usually dispersed and attenuated. The effective wave

!’ number K for densely distributed scatterers can be shown to be different
from that for sparsely distributed scatterers due to the pair-correlation
between scatterers. The dispersion of the phase velocity is characterized
'f- by the real part of K(KR) and the attenuation of the wave intensity can
‘ be described by the imaginary part of K(KI). The effective wave number K
éﬁ is frequency dependent except at the low frequency range in which the
- normalized phase velocity KR/k is independent of frequencies as shown in ]
Eq. (21).
"~ The normalized phase velocity KR/k decreases as the concentration .

ballit Kin

increases at the low frequency range which can be seen from Figure 4.
The dispersion of the phase velocity has a dependence on the size dis-
tribution also. One sees from the plot that particles with a higher

standard deviation in the Gaussian size distribution make the wave

AT Y 1 A...LA F R W N

o disperse faster. At the zero concentration there should be no dispersion.

Therefore the ratio between the effective wave number and the incident ¢

f; wave number becomes one as verified by Eq. (21).

The dispersion of the wave velocity in a medium containing the uniform
o size scatterers is generally not so strong as that in a medium containing .
-. size distributed scatterers. One interesting phenomenon can be seen from ﬂ

Figure 4 that for the uniform size rigid spheres the normalized phase

i velocity instead of decreasi | increaces with increasing concentration. .
. This fact may be explained by the high impedance of the rigid body. ﬂ
e !
n ]
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Figure 5 shows the relationship between the loss tangent ZKI/KR and
the concentrations at ka = 0.1, i.e. low frequency range. As can be seen
from the figure, the attenuation increases with the increasing concentration
until it reaches the maximum at the concentration of fifteen percent then
decreases with the increasing concentration up to forty percent. As a
matter of fact, this phenomenon and the saturation concentration of 15% is
valid for all cases at the low frequency range and has also been veri-
fied by experiments.13 For scatterers with the Gaussian size distributions,
one sees that the more the particle size deviates from its mean radius,
the larger the attenuation is. Therefore the attenuation of suspended
particles with the uniform size distribution, which is the special case of
zero standard deviation in Eq. (26}, is always smaller than that of
particles with the Gaussian size distribution. It can also be noted that
the attenuation of fixed rigid spheres is larger than the present sedimen-
tary particles which are modelled as elastic spheres. One sees from Eq. {20)
that the shear wave of the elastic material may affect the attenuation to
a certain degree. However, this effect does not appear in the present
problem due to its small magnitude.

The loss tangent is frequency dependent and its dependence in the low
frequency range for a fixed concentration (10%) is shown in Figure 6. On
the log-log plot one sees that all straight lines have the slope three as
predicted by the Rayleigh scattering theory. The attenuation increases

with the increasing frequency in the Rayleigh region (ka<<l). The scatterers

with a larger standard deviation in the Gaussian size distribution
will reach the assigned attenuation at a lower frequency. The dispersion
and the attenuation of waves using Equation (7) based on the single

scattering theory and Eq. (3) from Lloyd and Berry13 are also
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shown in Figures 4 and 7 respectively. One sees that unless the concentration
is very low the single scattering theory fails to predict the propagation -
characteristics.

Lloyd's equation predicts the wave dispersion well but fails in

determining the attenuation. Eq. (4) using the hole

[y =

correction is badly affected by the acoustic properties of scatterers.

PR RN

This can be seen from the attenuation for rigid and elastic scatterers
(predicts better for rigid spheres). However, it is still not possible to

obtain the right attenuation unless the concentration is very low. If

PR O PR

attention is paid, one can see that there is no correction for the acoustic

\
p

properties due to the concentration in Figs. (2) and (4) as it appears
implicitly in Eq. (19)(finally appeared in Eqs. (21) and (22)) due to the
consideration of the pair-correlation between scatterers. Besides the lack
of the correction for a higher concentration. This may be the reason why
the single scattering theory and its modified equations predict a lower
dispersion and a much higher attenuation.

The hole correction equation representing the pair-correlation function
is not suitable for the concentration greater than about five percent as
can be seen from Figure 7. Besides this the hole correction equation will

generate negative attenuation coefficients which are nonphysical results

even starting at a comparatively low concentration.

T
o Ao ok

When one is interested in the wave propagation through a higher

concentration of scatterers in the high frequency range, an iterative

I

solution can be obtained using a computer using suitable numerical methods.

The proposed radial distribution function (Eq. 13)) is useful for pair-

correlated elastic spheres whenever the concentration dependent parameters

are decided. However, this will be left to the next paper.
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TABLE I. Elastic Properties of the Sediments of the
Abyssal Hill used in Calculation.

l:: (Data from Stoll's17 paper)

Range of Grain Sizes (a) 2 - 4 um
Grain Density (pE) 2.65 g/cm3
Shear Wave Velocity (CT) 210 m/sec

Compressional Wave Velocity (CL) 3690 m/sec

" water density 1 g/cm3 and sound speed in water 1500 m/sec
are used.
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Incident plane wave

Geometry of the incident wave on a slab containing
a distribution of scatterers of varying size
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W = 0.4 (Percus - Yevick)

_—

W=0.46 (nodule histogram)

Figure 2.

The radial distribution function g(R) from Percus-Yevick
Equation and Nodule Histogram
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Concentration = O.|
-T(R-b)
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Virial expansion
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Figure 3. A comparison of g(R) using different expressions
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APPLICATION OF TWERSKY'S MULTIPLE SCATTERING FORMALISM

TO A DENSE SUSPENSION OF ELASTIC PARTICLES IN WATER

by

Y. Ma&% V.K. Varadar® and V.V. Varadan*
Wave Propagation Group
Department of Engineering Mechanics
The Ohio State University, Columbus, Ohio 43210

ABSTRACT

Acoustic wave propagation through a dense suspension of solid elastic
particles in water is studied. The particles in suspension have a size
distribution and their relative positions are described by a pair-correlation
function. Twersky's multiple scattering formalism is employed to obtain new
analytical expressions for the phase velocity and coherent attenuation of a
wide range of concentrations. Numerical results presented are of interest

in the study of marine sediments.
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INTRODUCTION

Recent advances in the area of multiple scattering in discrete random
media by 'I‘V.rerskyl-3 have shown that his technique can uniformly handle
scattering by acoustic and electromagnetic waves. He has obtained solutions
in the long-wavelength limit for the bulk propagation constants by treating
the particles as "hard" spheres in a statistical-mechanical sense. In this
paper, his approach is applied to study acoustic wave propagation in a fluid
containing a dense suspension of spherical elastic particles of varying sizes.
Closed form expressions are obtained for both phase velocity and coherent
attenuation in the Rayleigh limit. Numerical results are presented at higher

frequencies for marine sediments for various values of concentrations.
SOLUTION FOR RADIALLY SYMMETRIC SCATTERERS

Consider a random distribution of elastic spheres in water. The elastic

and p., and

properties of the scatterers are given by Lame's constants A 1

1
density Pqe The fluid properties are given by compressibility XA and density

p. The longitudinal and shear wave velocities in the elastic scatterer are

/2

1/2 1 .
given by c, = [+ 2uy) /o4 and c_ = (u;/0,) while the compressional

wave velocity in water is given by c = (X/p)llz.
The effective wavenumber K for a random distribution of pair-correlated

1
scatterers can be written in terms of wavenumber k(= w/c) in water as follows

4mn

2 2 o 2n

K = Kk + — ) AN (1)

n=o
where
n = K/k
L m—— v -n+m
A =k (001 + mzo iA_(n) B ] (2)

L A e
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where
— . [ ,  1(2n+1)
fn(a,O) Jo fn(a,O) q(a)da 5 fn(a,o) = I:IE;—_

Cn is a complex function containing density, compressibility and rigidity of
the elastic scatterer and different orders of spherical Bessel and Neumann

functions, see Appendix A and

H = nim d 0.0 i4nno pmin_ m
nm In—m| ™\ n ’ m k3 nz_l + Nm (3)
S R I Y11 (2) 2
Nm = Nm + iNm = 41rn° !o[g(R) l]Jm(KR)hm (kR)R“dR

In Eqs. (2) and (3), n, = N/V is the number density (number of scatterers per
unit volume), fn(a,O) is the forward scattering amplitude of a spherical scat-
terer of radius 'a', q(a) is the size distribution function, g(R) is the pair-

correlation functions, jm( ) and hiz)( ) are the spherical Bessel and Hankel

functions, respectively, and the coefficients dhl((); 0 ) can be obtained from
n m
the expansion of the Legendre polynomials as given by
n+m
0 o0
= . . 4
P (x) P_(x) qu dq(n S ) P (¥ (4)

n’m

s (0.9) - af0,0

N\n m N\m n

d 0;0 +dl 0;0 +...+d 0;0 =1; q=mhn (5)
°\n m n m 9\n n

0 o0
dodd (nl, ) =0 ; mtn = even

d <(); 0 ) =0 ; mtn = odd
even
m n

dq<o H 0) has the following properties:

The effective wavenumber K(= K +1K2) is complex, the real and imaginary parts

1
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of which are related to the phase velocity and coherent attenuation, res-

- IAA'A‘

pectively.

PR

For monopole and dipole cases

d(o;o =0,d<0;0)=1 (6)
°\o0 1 I\o 1

In the Rayleigh limit, only monopole and dipole terms and a two-term expansion

of (1) are considered in obtaining a closed form expression for the phase veloc-

M et e Ty . . . . .
RN LLL PPN G N l

ity and attenuation. For higher frequencies, the general form of dq and more

terms in expansion of Eq. (1) should be employed. This is best done numerically.

To calculate the effective wavenumber K, the equation (3) containing Nm
which involves the radial distribution function g(R) needs to be obtained first.
For a more precise calculation, the correlation integral, Eq. (3), should be
computed for each value of 4. However, we have chosen to compute the corre-
lation integral for the mean sphere. This is discussed in more detail in

what follows. Following the work by Twersky, we can write
Nm = 4nno F(K,k)Ia : = J [g(R)-l]RQdR (7
0

where F(K,k) is a function of the effective wavenumber K and the host medium

wavenumber k. Using the Virial expansionl for g(R), we can show that

1“ (148w a+l + 80 (2b)a+l . 3ba+l(1_2u+2) . ba+l(2a+4_1) @
o+l o+l 4(a+2) 16(a+4)
- -3
where b = 2a and w = n04W3/3 is the concentration of scatterers and
a =\3/ 47N/3w 1s the mean radius. For the lowest order of m in (7) which is
useful for low frequency scattering, Ni is obtained as
Ni = Annolz = - 8w + 34w2 (9)

The Virial series expansion and the resulting Eq. (9) seem to be good for low
concentrations w<0.05. For higher concentrations, one can obtain the following

expression derived by Twersky for Ni by using Ornstein-Zernicke equation

given by




1-w*
o (1+2w)2

[

-1 (10)

Eq. (10) is preferred to Eq. (9) since it is not restricted to small values of
w. But corresponding expressions cannot be obtained for all values of «a,

hence we have to resort to the virial expansion.

PHASE VELOCITY AND COHERENT ATTENUATION

The suspended sedimentary particles in water are in general 2 to 4 microns
in radius. For an acoustic wave with a frequency range of 1.2 to 12 MHz, this
corresponds to a non-dimensional wavenumber ka in the range of 0.01 to O.1.

For such long wavelength acoustic wave propagation studies, it is enough to
keep only monopole and dipole terms in Eq. (1). The resulting dispersion equa-

tion is given by

4ﬂno
2 1+ 3 A,
K k
L T — (11)
k2 4nn°
L-—354
k
where
Ab = kfo[l + 1A°Hoo + iAlnﬂol]
-1
Al = kfl[l + iAon Hlo + iA1H11]
1 2
Hoo = No + Mg (12)
_ gl 2
Hop = Byp = M1 + 1Ny
4mn
1 o 2...1 2
B2 E[i“kT + Hypl + 3N, + 1N7]
Following Twersky's workl, AO and A1 can be written as follows
56
A = ——
o] l-iaow
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a = 1 (13)
4™ J a
o 71 1
1l + 33 " 1-3— W

— i
%o = r Teic, 1(a)da
0 0

(14)
- 3i
2 ’F T+ic, 1(@)da
0 1
For k¥ << 1, we obtain the following limiting values for 36 and Ei
3
_ . i(ka)
20 3 %0e (@)
(15)
3
T = -i(ka) a¢ G(a)
where
1
20e -1
ER 2 4 cg 2
gl -3 1 (16)
a, = 18
1f 1+2g

In Eqs. (15) and (16), g is the density ratio between the scatterer and the
surround ing med ium and cp, g and ¢ are the longitudinal and transverse wave
speeds of the elastic scatterer and the compressional wave speed of the sur-
rounding fluid. As a limiting case, we can also obtain the dispersion rela-
tions for a random distribution of either rigid (Al,u1+@) or fluid (ul*O) scat-

terers in water.

After some manipulations, one can obtain the real (Kl) and imaginary

part (K2) of the effective wavenumber K as follows
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I
K 2 "
8 (_1) . (1+we) (1-wB) an
k 1+2w8 .

g 2K 2 2 ‘ﬂ
- 2 _1 3 a 38

| K 3R W Iy + Tawe ey ;
4. ‘?:i
) where ?:
" 1
DS ane ' fluid 2

a = -1 G(@ |, rigid spheres (18) .
30e s elastic 1
a e fluid
o B = -1/2 c@ , rigid spheres (19)
= 1 i ‘
aj¢ elastic
In Eq. (17), v = (1—8w+34w2)for 0<w<0.05 and y=(1-w)4/(1+2w)2 for w>0.05. For
l a uniform size distribution, G(@)= 1 while for a Gaussian size distribution
= -2 = 2 3 ~
= = 2 la la " m B

" +302 - ep(- LEI® j
o 2 P i
= 3 132 m , 1 7 '
o +—— exp[- () 1(z) + 31 + erf(=—)] (20) ¥4
) /2n a 2n j
- "
o where m is the standard deviation. :

The Gaussian distribution function has an infinite tail, however in ':

.;, the numerical calculations the cut off size was chosen to be 2a where a ;“;

1
-, is given by :
'\4 .-
~° - [ -
ot as= \3/ 4N/ 3w

4“':'

With this cut off, for % = 0.4, q(25) = A.4x10-2 which is small (4% of peak
j.:: value) and 1f ka is small 2ka is still quite small and the long wavelength
i 6
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approximation is still valid for m/a=0.18, q(2§)=1.9x10_7, which is negligible.

)

The question may be raised as to the radius of the excluded spherical volume
" surrounding each scatterer. If we use 4a, the diameter of the largest size
e sphere of the distribution, although we would be correct in the integration
on the allowed position for each scatterer, we would be excluding an un-
reasonable volume, thus limiting the volume fraction of scatterers. It seems
more reasonable to take the diameter of the mean sphere, 2a as the radius
~ of the excluded spherical volume. On the average, this would be applicable
to most scatterers and allow us to consider higher volume fractions. If the
volume fraction is low enough, whether the radius of the excluded sphere is

2a or 4a will not pose a problem. For higher concentrations, if m/a <0.5,

[

the procedure we have followed should yield good results.

o Some numerical calculations were carried out for sediment particles in

i water.

properties are given in Table I. In the Rayleigh limit, the normalized phase

The particles are assumed to be spherical in shape and their elastic

;J velocity Ki/k is frequency independent. Its dependence on concentration is
shown in Fig. 1 for both uniform and Gaussian size distributions. The co-

Y herent attenuation (loss tangent) KZ/Kl’ however, depends on frequency as

- depicted by Fig. 2. From the log-log plot of Fig. 2, one can see that the

loss tangent for both uniform and gaussian size distributions is a straight

f? line with a slope equal to 3 as predicted by Eq. (17). Figure 3 presents

. the loss tangent as a function of concentration at ka=0.1. The attenuation
é; increases with increasing concentration until it reaches a maximum at c=15%
;f and then decreases with increasing concentration. This kind of behavior has
- been observed experimentally by Lloyd and Berry4.

ii For higher frequencies and concentrations, more terms must be kept in

Eq. (1) along with suitable radial distribution function g(R). Our model of
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the random system is that the spherical scatterers cannot interpenetrate.

In the statistical mechanics literature, this is synonymous with the ensemble
of "hard" spheres. Several theories and calculations are available for deter-
mining the joint probability distribution function, viz., the Hypernetted-Chain
Equation(HNC), the Percus-Yevick Approximation (P-YA), the Self-Consistent
Approximation (SCA), Monte Carlo calculations, etc. We found the SCA is better
suited for higher concentrations, see Ref. 5.

In Fig; 4, the normalized phase velocity is plotted as a function of
frequency. The phase velocity displays an anomalous dispersion for 0.7<ka<l.0.
This anomaly 1is a result of some resonance effect associated with the individual
particles. In Fig. 5, the attenuation is plotted as a function of frequency
for the same concentration, ¢=0.105. The attenuation is a maximum in the fre-
quency range where the phase velocity displays an anomalous behavior. However,
since the calculations were made only up to ka=1.0, we cannot make a definitive

-

g

statement in this regard. In Figs. 6 and 7, the normalized phase velocity and 1
attenuation are plotted as a function of concentration at ka=1.0. ;
1

B IR
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CONCLUSIONS

In this paper, Twersky's multiple scattering formalism has been ex-
tended to elastic scatterers in water. It has been shown that in addition
to providing closed form expressions for the dispersion relations for elastic
scatterers in the low frequency limit, his formalism is also well suited for

numerical computations at higher frequencies and concentrations employing

e AR Al B

suitable pair-correlation functions. ]
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TABLE I. Elastic Properties of Sediments Used in Calculations6

Yy

as

Range of grain sizes (a) 2-4 um
Grain density (pl) 2.65 g/cm3
Shear wave velocity (cs) 210 m/sec
Compressional wave velocity (cp) 3690 m/sec
Sound speed in water 1500 m/sec
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.:.,: APPENDIX A: THE EXPRESSION OF Cn USED IN EQ. (1)
'.._\
li 1
n.D-g A32 nl E
!.'. Cn = xl N
',“ _ 2 . E
: Tnil * 8 7 ‘m
3
»
where
2.n
J X, ]
n2
D= 2n(n+l) |1- —o= | o 3 B3 2, 0
3 2n In3
.\ j '
T . X
E‘S Jn" 3°n3
E = 4n(n+1) | 1- = 1- I
“,;4 sznZ n3
- Z ”
ra’ x.7] A "
' ‘ 3 ’n3 ) ] In2 in2
-2x2 + n” + n-2 —p - 1 - - ~
Lo ( Jn3 2h- j ' an
5 n2
s

n.c n (ka), n o = nn(kpa)

Jar = Iptkad, dp, = dptka), g 0= dpkga)

C kL= m/cp R k,r = w/cs , k = wf
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